Interacting chiral gauge fields in six dimensions and Born-Infeld theory

被引:175
作者
Perry, M [1 ]
Schwarz, JH [1 ]
机构
[1] CALTECH,PASADENA,CA 91125
关键词
Born-Infeld theory; self-dual tensors; six-dimensional field theory; M-theory;
D O I
10.1016/S0550-3213(97)00040-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Dimensional reduction of a self-dual tensor gauge field in 6D gives an Abelian vector gauge field in 5D. We derive the conditions under which an interacting 5D theory of an Abelian vector gauge field is the dimensional reduction of a 6D Lorentz invariant interacting theory of a self-dual tenser. Then we specialize to the particular 6D theory that gives 5D Born-Infeld theory. The field equation and Lagrangian of this 6D theory are formulated with manifest 5D Lorentz invariance, while the remaining Lorentz symmetries are realized non-trivially. A string soliton with finite tension and self-dual charge is constructed. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:47 / 64
页数:18
相关论文
共 33 条
[1]   OPEN STRINGS IN BACKGROUND GAUGE-FIELDS [J].
ABOUELSAOOD, A ;
CALLAN, CG ;
NAPPI, CR ;
YOST, SA .
NUCLEAR PHYSICS B, 1987, 280 (04) :599-624
[2]   SUPER P-BRANES [J].
ACHUCARRO, A ;
EVANS, JM ;
TOWNSEND, PK ;
WILTSHIRE, DL .
PHYSICS LETTERS B, 1987, 198 (04) :441-446
[3]  
AGANAGIC M, HEPTH9610249
[4]   Boundaries in M-theory [J].
Becker, K ;
Becker, M .
NUCLEAR PHYSICS B, 1996, 472 (1-2) :221-230
[5]   THE BORN-INFELD ACTION FROM CONFORMAL-INVARIANCE OF THE OPEN SUPERSTRING [J].
BERGSHOEFF, E ;
SEZGIN, E ;
POPE, CN ;
TOWNSEND, PK .
PHYSICS LETTERS B, 1987, 188 (01) :70-74
[6]  
BERGSHOEFF E, HEPTH9605087
[7]  
BERKOVITS N, 9610134 HEPTH
[8]   Foundations of the new field theory. [J].
Born, M ;
Infeld, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1934, 144 (A852) :0425-0451
[9]  
Born M, 1937, Ann. Inst. Poincare, V7, P155
[10]   LOOP CORRECTIONS TO SUPERSTRING EQUATIONS OF MOTION [J].
CALLAN, CG ;
LOVELACE, C ;
NAPPI, CR ;
YOST, SA .
NUCLEAR PHYSICS B, 1988, 308 (2-3) :221-284