Membranes at quantum criticality

被引:611
作者
Horava, Petr [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2009年 / 03期
关键词
p-branes; Models of Quantum Gravity; Classical Theories of Gravity; Bosonic Strings; SUPERSYMMETRY; QUANTIZATION; MODELS;
D O I
10.1088/1126-6708/2009/03/020
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a quantum theory of membranes designed such that the ground-state wavefunction of the membrane with compact spatial topology Sigma(h) reproduces the partition function of the bosonic string on worldsheet Sigma(h). The construction involves worldvolume matter at quantum criticality, described in the simplest case by Lifshitz scalars with dynamical critical exponent z = 2. This matter system must be coupled to a novel theory of worldvolume gravity, also exhibiting quantum criticality with z = 2. We first construct such a nonrelativistic "gravity at a Lifshitz point" with z = 2 in D + 1 spacetime dimensions, and then specialize to the critical case of D = 2 suitable for the membrane worldvolume. We also show that in the second-quantized framework, the string partition function is reproduced if the spacetime ground state takes the form of a Bose-Einstein condensate of membranes in their first-quantized ground states, correlated across all genera.
引用
收藏
页数:34
相关论文
共 39 条
  • [1] [Anonymous], 2004, Equilibrium and nonequilibrium statistical thermodynamics
  • [2] [Anonymous], 1963, MORSE THEORY AM 51, DOI [10.1515/9781400881802, DOI 10.1515/9781400881802]
  • [3] Topological order and conformal quantum critical points
    Ardonne, E
    Fendley, P
    Fradkin, E
    [J]. ANNALS OF PHYSICS, 2004, 310 (02) : 493 - 551
  • [4] PROPERTIES OF THE 11-DIMENSIONAL SUPERMEMBRANE THEORY
    BERGSHOEFF, E
    SEZGIN, E
    TOWNSEND, PK
    [J]. ANNALS OF PHYSICS, 1988, 185 (02) : 330 - 368
  • [5] Chaikin PM, 1995, PRINCIPLES CONDENSED
  • [6] Dijkgraaf R, 2005, ADV THEOR MATH PHYS, V9, P603
  • [7] NON-LINEAR MODELS IN 2+EPSILON DIMENSIONS
    FRIEDAN, D
    [J]. PHYSICAL REVIEW LETTERS, 1980, 45 (13) : 1057 - 1060
  • [8] NONLINEAR MODELS IN 2 + EPSILON-DIMENSIONS
    FRIEDAN, DH
    [J]. ANNALS OF PHYSICS, 1985, 163 (02) : 318 - 419
  • [9] GODBILLON C, 1991, FEUILLETAGES BIRKHAU
  • [10] Gunaydin M, 2006, J HIGH ENERGY PHYS