Regulation of soil phosphatase and chitinase activity by N and P availability

被引:759
作者
Olander, LP [1 ]
Vitousek, PM [1 ]
机构
[1] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
关键词
acid phosphatase; chitinase; BD-glucosaminide; Hawaii; nitrogen and phosphorus availability; potential enzyme activity; soil;
D O I
10.1023/A:1006316117817
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil microorganisms and plants produce enzymes that mineralize organically bound nutrients. When nutrient availability is low, the biota may be able to increase production of these enzymes to enhance the supply of inorganic nitrogen (N) and phosphorus (P). Regulation of enzyme production may be a point where N and P cycles interact. We measured acid phosphatase and chitinase (N-acetyl ss-D-glucosaminide) activity in soil across a chronosequence in Hawaii where N and P availability varies substantially among sites and long term fertilizer plots had been maintained for over 4 years. Phosphatase activity was high at all sites. Chitinase activity decreased significantly as age and N availability increased across the chronosequence. Phosphorus addition suppressed phosphatase activity at all sites, while N addition increased phosphatase activity at the young, N-limited site. In contrast, N addition repressed chitinase activity only at the N limited young site, and P additions had no effect on chitinase activity. These results suggest that the regulatory relationship between nutrient supply and nutrient mineralization are asymmetric for N and P, and that the differences could help to explain differences observed in patterns of N and P availability.
引用
收藏
页码:175 / 190
页数:16
相关论文
共 40 条
[1]   PHOSPHATASE-ACTIVITY AND PHOSPHORUS FRACTIONS IN KARRI (EUCALYPTUS-DIVERSICOLOR F MUELL) FOREST SOILS [J].
ADAMS, MA .
BIOLOGY AND FERTILITY OF SOILS, 1992, 14 (03) :200-204
[2]   Spatial distribution of soil phosphatase activity within a riparian forest [J].
Amador, JA ;
Glucksman, AM ;
Lyons, JB ;
Gorres, JH .
SOIL SCIENCE, 1997, 162 (11) :808-825
[3]   SPATIAL VARIABILITY OF PHOSPHATASE, UREASE, PROTEASE, ORGANIC-CARBON AND TOTAL NITROGEN IN SOIL [J].
BONMATI, M ;
CECCANTI, B ;
NANNIPERI, P .
SOIL BIOLOGY & BIOCHEMISTRY, 1991, 23 (04) :391-396
[4]   DETERMINATION OF TOTAL, ORGANIC, AND AVAILABLE FORMS OF PHOSPHORUS IN SOILS [J].
BRAY, RH ;
KURTZ, LT .
SOIL SCIENCE, 1945, 59 (01) :39-45
[5]   DETERMINATION AND ISOTOPE-RATIO ANALYSIS OF DIFFERENT FORMS OF NITROGEN IN SOILS .3. EXCHANGEABLE AMMONIUM NITRATE AND NITRITE BY EXTRACTION-DISTILLATION METHODS [J].
BREMNER, JM ;
KEENEY, DR .
SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1966, 30 (05) :577-&
[7]   MICROBIAL BIOMASS-P, LABILE-P, AND ACID-PHOSPHATASE-ACTIVITY IN THE HUMUS LAYER OF A SPRUCE FOREST, AFTER REPEATED ADDITIONS OF FERTILIZERS [J].
CLARHOLM, M .
BIOLOGY AND FERTILITY OF SOILS, 1993, 16 (04) :287-292
[8]   CHANGES IN SOIL-PHOSPHORUS FRACTIONS AND ECOSYSTEM DYNAMICS ACROSS A LONG CHRONOSEQUENCE IN HAWAII [J].
CREWS, TE ;
KITAYAMA, K ;
FOWNES, JH ;
RILEY, RH ;
HERBERT, DA ;
MUELLERDOMBOIS, D ;
VITOUSEK, PM .
ECOLOGY, 1995, 76 (05) :1407-1424
[9]  
DICK RP, 1988, BIOL FERT SOILS, V6, P159, DOI 10.1007/BF00257667
[10]   SOIL ENZYME-ACTIVITIES AFTER 1500 YEARS OF TERRACE AGRICULTURE IN THE COLCA VALLEY, PERU [J].
DICK, RP ;
SANDOR, JA ;
EASH, NS .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 1994, 50 (02) :123-131