The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional

被引:430
作者
Shrout, Joshua D.
Chopp, David L.
Just, Collin L.
Hentzer, Morten
Givskov, Michael
Parsek, Matthew R. [1 ]
机构
[1] Univ Iowa, Dept Microbiol, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA
[3] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
[4] H Lundbeck & Co AS, Discovery Pharmacol Res, Valby, Denmark
[5] Tech Univ Denmark, Bioctr, Dept Biomed Microbiol, Copenhagen, Denmark
关键词
D O I
10.1111/j.1365-2958.2006.05421.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The role of quorum sensing in Pseudomonas aeruginosa biofilm formation is unclear. Some researchers have shown that quorum sensing is important for biofilm development, while others have indicated it has little or no role. In this study, the contribution of quorum sensing to biofilm development was found to depend upon the nutritional environment. Depending upon the carbon source, quorum-sensing mutant strains (lasIrhll and lasRrhlR) either exhibited a pronounced defect early in biofilm formation or formed biofilms identical to the wild-type strain. Quorum sensing was then shown to exert its nutritionally conditional control of biofilm development through regulation of swarming motility. Examination of pilA and fliM mutant strains further supported the role of swarming motility in biofilm formation. These data led to a model proposing that the prevailing nutritional conditions dictate the contributions of quorum sensing and swarming motility at a key juncture early in biofilm development.
引用
收藏
页码:1264 / 1277
页数:14
相关论文
共 39 条
[1]   A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms [J].
Allesen-Holm, M ;
Barken, KB ;
Yang, L ;
Klausen, M ;
Webb, JS ;
Kjelleberg, S ;
Molin, S ;
Givskov, M ;
Tolker-Nielsen, T .
MOLECULAR MICROBIOLOGY, 2006, 59 (04) :1114-1128
[2]   Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures [J].
An, DD ;
Danhorn, T ;
Fuqua, C ;
Parsek, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3828-3833
[3]   AN IMPROVED TN7-BASED SYSTEM FOR THE SINGLE-COPY INSERTION OF CLONED GENES INTO CHROMOSOMES OF GRAM-NEGATIVE BACTERIA [J].
BAO, Y ;
LIES, DP ;
FU, H ;
ROBERTS, GP .
GENE, 1991, 109 (01) :167-168
[4]  
BINDER K, 1986, TOPICS CURRENT PHYS, V7
[5]   Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms [J].
Boles, BR ;
Thoendel, M ;
Singh, PK .
MOLECULAR MICROBIOLOGY, 2005, 57 (05) :1210-1223
[6]   NEW ALGORITHM FOR MONTE-CARLO SIMULATION OF ISING SPIN SYSTEMS [J].
BORTZ, AB ;
KALOS, MH ;
LEBOWITZ, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :10-18
[7]   SYNTHESIS OF MULTIPLE EXOPRODUCTS IN PSEUDOMONAS-AERUGINOSA IS UNDER THE CONTROL OF RHLR-RHLI, ANOTHER SET OF REGULATORS IN STRAIN PAO1 WITH HOMOLOGY TO THE AUTOINDUCER-RESPONSIVE LUXR-LUXI FAMILY [J].
BRINT, JM ;
OHMAN, DE .
JOURNAL OF BACTERIOLOGY, 1995, 177 (24) :7155-7163
[8]   Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa [J].
Caiazza, NC ;
Shanks, RMQ ;
O'Toole, GA .
JOURNAL OF BACTERIOLOGY, 2005, 187 (21) :7351-7361
[9]   Bacterial biofilms: A common cause of persistent infections [J].
Costerton, JW ;
Stewart, PS ;
Greenberg, EP .
SCIENCE, 1999, 284 (5418) :1318-1322
[10]   Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1 [J].
Davey, ME ;
Caiazza, NC ;
O'Toole, GA .
JOURNAL OF BACTERIOLOGY, 2003, 185 (03) :1027-1036