An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants

被引:213
作者
Moller, J.
Pettitt, A. N.
Reeves, R.
Berthelsen, K. K.
机构
[1] Univ Aalborg, Dept Math Sci, DK-9220 Aalborg E, Denmark
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] Univ Aalborg, Dept Math Sci, DK-9220 Aalborg E, Denmark
基金
澳大利亚研究理事会;
关键词
auxiliary variable method; Ising model; Markov chain monte carlo; metropolis-hastings algorithm; normalising constant; partition function;
D O I
10.1093/biomet/93.2.451
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Maximum likelihood parameter estimation and sampling from Bayesian posterior distributions are problematic when the probability density for the parameter of interest involves an intractable normalising constant which is also a function of that parameter. In this paper, an auxiliary variable method is presented which requires only that independent samples can be drawn from the unnormalised density at any particular parameter value. The proposal distribution is constructed so that the normalising constant cancels from the Metropolis-Hastings ratio. The method is illustrated by producing posterior samples for parameters of the Ising model given a particular lattice realisation.
引用
收藏
页码:451 / 458
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 2021, Bayesian Data Analysis
[2]  
[Anonymous], 2005, MONTE CARLO STAT MET
[3]  
[Anonymous], 2006, CASE STUDIES SPATIAL, DOI DOI 10.1007/0-387-31144-0_4
[4]   A recursive algorithm for Markov random fields [J].
Bartolucci, F ;
Besag, J .
BIOMETRIKA, 2002, 89 (03) :724-730
[5]   Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling [J].
Berthelsen, KK ;
Moller, J .
SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (03) :549-564
[6]   STATISTICAL-ANALYSIS OF NON-LATTICE DATA [J].
BESAG, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1975, 24 (03) :179-195
[7]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[8]   From metropolis to diffusions: Gibbs states and optimal scaling [J].
Breyer, LA ;
Roberts, GO .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (02) :181-206
[9]  
Chen MH, 1997, ANN STAT, V25, P1563
[10]  
CRESSIE N, 2000, METHODOL COMPUT APPL, V2, P5