The electrohydrodynamic stability of a liquid bridge: microgravity experiments on a bridge suspended in a dielectric gas

被引:55
作者
Burcham, CL [1 ]
Saville, DA [1 ]
机构
[1] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
关键词
D O I
10.1017/S0022112099007193
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The electrohydrodynamic stability of a liquid bridge was studied in steady and oscillatory axial electric fields with a novel apparatus aboard a space shuttle. To avoid interphase transport, which complicates matters in terrestrial, matched-density systems, the experiments focused on a liquid column surrounded by a dielectric gas. The micro-gravity acceleration level aboard the spacecraft kept the Bond number small; so interface deformation by buoyancy was negligible. To provide microgravity results for comparison with terrestrial data, the behaviour of a castor oil bridge in a silicone oil matrix liquid was studied first. The results from these experiments are in excellent agreement with earlier work with isopycnic systems as regards transitions from a perfect cylinder to the amphora shape and the separation of an amphora into drops. In addition, the location of the amphora bulge was found to be correlated with the field direction, contrary to the leaky dielectric model but consistent with earlier results from terrestrial experiments. Next, the behaviour of a bridge surrounded by a dielectric gas, sulphur hexafluoride (SF6), was investigated. In liquid-gas experiments, electrohydrodynamic ejection of liquids from 'Taylor cones' was used to deploy fluid and form bridges by remote control. Experiments with castor oil bridges in SF6 identified the conditions for two transitions: cylinder-amphora, and pinch-off. In addition, new behaviour was uncovered with liquid-gas interfaces. Contrary to expectations based on perfect dielectric behaviour, castor oil bridges in SF6 could not be stabilized in AC fields. On the other hand, a low-conductivity silicone oil bridge, which could not be stabilized by a DC field, was stable in an AC field.
引用
收藏
页码:37 / 56
页数:20
相关论文
共 20 条
[1]  
[Anonymous], 1992, SMR
[2]   EQUILIBRIUM AND STABILITY CHARACTERISTICS OF ZERO-GRAVITY FLUID BRIDGES CONSTRAINED BETWEEN EQUAL SOLID RODS [J].
BOUCHER, EA ;
JONES, TGJ .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1988, 126 (02) :469-481
[3]  
BURCHAM CL, 1998, THESIS PRINCETON U
[4]   A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field [J].
Feng, JQ ;
Scott, TC .
JOURNAL OF FLUID MECHANICS, 1996, 311 :289-326
[5]   THE EFFECT OF RESIDUAL AXIAL GRAVITY ON THE STABILITY OF LIQUID COLUMNS SUBJECTED TO ELECTRIC-FIELDS [J].
GONZALEZ, H ;
CASTELLANOS, A .
JOURNAL OF FLUID MECHANICS, 1993, 249 :185-206
[6]   STABILIZATION OF DIELECTRIC LIQUID BRIDGES BY ELECTRIC-FIELDS IN THE ABSENCE OF GRAVITY [J].
GONZALEZ, H ;
MCCLUSKEY, FMJ ;
CASTELLANOS, A ;
BARRERO, A .
JOURNAL OF FLUID MECHANICS, 1989, 206 :545-561
[7]  
PLATEAU J, 1864, EXPT THEORETICAL R 2, P285
[8]  
PLATEAU JAF, 1866, EXPT THEORETICAL RES, P255
[9]  
PLATEAU JAF, 1863, EXPT THEORETICAL RES, P207
[10]  
PLATEAU JAF, 1865, EXPT THEORETICAL RES, P411