Decision making under interval probabilities

被引:92
作者
Yager, RR
Kreinovich, V
机构
[1] Iona Coll, Inst Machine Intelligence, New Rochelle, NY 10801 USA
[2] Univ Texas, Dept Comp Sci, El Paso, TX 79968 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
D O I
10.1016/S0888-613X(99)00028-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
If we know the probabilities p(1),...,p(n) of different situations s(1),...,s(n), then we can choose a decision A(i) for which the expected benefit C-i = p(1).c(i1) + ... + p(n).c(in) takes the largest possible value, where c(ij) denotes the benefit of decision A(i) in situation s(j). In many real life situations, however, we do not know the exact values of the probabilities p(j); we only know the intervals p(j) = [p(j)(-), p(j)(+)] of possible values of these probabilities. In order to make decisions under such interval probabilities, we would like to generalize the notion of expected benefits to interval probabilities. In this paper, we show that natural requirements lead to a unique (and easily computable) generalization. Thus, we have a natural way of decision making under interval probabilities. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:195 / 215
页数:21
相关论文
共 32 条
  • [1] Aczel J., 1989, FUNCTIONAL EQUATIONS
  • [2] [Anonymous], NUMERICAL TOOLBOX VE
  • [3] BERGSTEIN H, 1990, DELPROJEKT INFORMATI
  • [4] BERGSTEIN U, 1990, DOKUMENTATION 7 JUNI
  • [5] DEMPSTER RULE FOR EVIDENCE ORDERED IN A COMPLETE DIRECTED ACYCLIC GRAPH
    BERGSTEN, U
    SCHUBERT, J
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1993, 9 (01) : 37 - 73
  • [6] Dubois D., 1982, FUZZY INFORM DECISIO, P167
  • [7] ERICKSON GJ, 1997, MAXIMUM ENTROPY BAYE
  • [8] Fishburn P.C., 1969, UTILITY THEORY DECIS
  • [9] Hansen Eldon R., 1992, Global optimization using interval analysis
  • [10] HURWICZ L., 1952, 355 COWL COMM