Establishment and Characterization of a Lethal Mouse Model for the Angola Strain of Marburg Virus

被引:46
作者
Qiu, Xiangguo [1 ]
Wong, Gary [1 ,2 ]
Audet, Jonathan [1 ,2 ]
Cutts, Todd [3 ]
Niu, Yulian [4 ]
Booth, Stephanie [4 ]
Kobinger, Gary P. [1 ,2 ,5 ,6 ]
机构
[1] Publ Hlth Agcy Canada, Natl Microbiol Lab, Special Pathogens Program, Winnipeg, MB, Canada
[2] Univ Manitoba, Dept Med Microbiol, Winnipeg, MB, Canada
[3] Publ Hlth Agcy Canada, JC Wilt Infect Dis Res Ctr, Appl Biosafety & Res Program, Winnipeg, MB, Canada
[4] Publ Hlth Agcy Canada, Natl Microbiol Lab, Winnipeg, MB, Canada
[5] Univ Manitoba, Dept Immunol, Winnipeg, MB, Canada
[6] Univ Penn, Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
关键词
PROTECT GUINEA-PIGS; EBOLA-VIRUS; HEMORRHAGIC-FEVER; NONHUMAN-PRIMATES; INFECTION; PROPHYLAXIS; EXPOSURE; VACCINES; MICE; LIVE;
D O I
10.1128/JVI.01643-14
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Infections with Marburg virus (MARV) and Ebola virus (EBOV) cause severe hemorrhagic fever in humans and nonhuman primates (NHPs) with fatality rates up to 90%. A number of experimental vaccine and treatment platforms have previously been shown to be protective against EBOV infection. However, the rate of development for prophylactics and therapeutics against MARV has been lower in comparison, possibly because a small-animal model is not widely available. Here we report the development of a mouse model for studying the pathogenesis of MARV Angola (MARV/Ang), the most virulent strain of MARV. Infection with the wild-type virus does not cause disease in mice, but the adapted virus (MARV/Ang-MA) recovered from liver homogenates after 24 serial passages in severe combined immunodeficient (SCID) mice caused severe disease when administered intranasally (i.n.) or intraperitoneally (i.p.). The median lethal dose (LD50) was determined to be 0.015 50% TCID50 (tissue culture infective dose) of MARV/Ang-MA in SCID mice, and i.p. infection at a dose of 1,000X LD50 resulted in death between 6 and 8 days postinfection in SCID mice. Similar results were obtained with immunocompetent BALB/c and C57BL/6 mice challenged i.p. with 2,000X LD50 of MARV/Ang-MA. Virological and pathological analyses of MARV/Ang-MA-infected BALB/c mice revealed that the associated pathology was reminiscent of observations made in NHPs with MARV/Ang. MARV/Ang-MA-infected mice showed most of the clinical hallmarks observed with Marburg hemorrhagic fever, including lymphopenia, thrombocytopenia, marked liver damage, and uncontrolled viremia. Virus titers reached 10(8) TCID50/ml in the blood and between 10(6) and 1010 TCID50/g tissue in the intestines, kidney, lungs, brain, spleen, and liver. This model provides an important tool to screen candidate vaccines and therapeutics against MARV infections. IMPORTANCE The Angola strain of Marburg virus (MARV/Ang) was responsible for the largest outbreak ever documented for Marburg viruses. With a 90% fatality rate, it is similar to Ebola virus, which makes it one of the most lethal viruses known to humans. There are currently no approved interventions for Marburg virus, in part because a small-animal model that is vulnerable to MARV/Ang infection is not available to screen and test potential vaccines and therapeutics in a quick and economical manner. To address this need, we have adapted MARV/Ang so that it causes illness in mice resulting in death. The signs of disease in these mice are reminiscent of wild-type MARV/Ang infections in humans and nonhuman primates. We believe that this will be of help in accelerating the development of life-saving measures against Marburg virus infections.
引用
收藏
页码:12703 / 12714
页数:12
相关论文
共 37 条
[1]   Aerosol Exposure to the Angola Strain of Marburg Virus Causes Lethal Viral Hemorrhagic Fever in Cynomolgus Macaques [J].
Alves, D. A. ;
Glynn, A. R. ;
Steele, K. E. ;
Lackemeyer, M. G. ;
Garza, N. L. ;
Buck, J. G. ;
Mech, C. ;
Reed, D. S. .
VETERINARY PATHOLOGY, 2010, 47 (05) :831-851
[2]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing, V1
[3]   Marburg Virus VP35 Can Both Fully Coat the Backbone and Cap the Ends of dsRNA for Interferon Antagonism [J].
Bale, Shridhar ;
Julien, Jean-Philippe ;
Bornholdt, Zachary A. ;
Kimberlin, Christopher R. ;
Halfmann, Peter ;
Zandonatti, Michelle A. ;
Kunert, John ;
Kroon, Gerard J. A. ;
Kawaoka, Yoshihiro ;
MacRae, Ian J. ;
Wilson, Ian A. ;
Saphire, Erica Ollmann .
PLOS PATHOGENS, 2012, 8 (09)
[4]   A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever [J].
Bray, M ;
Davis, K ;
Geisbert, T ;
Schmaljohn, C ;
Huggins, J .
JOURNAL OF INFECTIOUS DISEASES, 1998, 178 (03) :651-661
[5]  
CDC, 2014, CHRON MARB HEM FEV O
[6]  
CDC, 2014, OUTBR CHRON EB HEM F
[7]   Cross-protection against Marburg virus strains by using a live, attenuated recombinant vaccine [J].
Daddario-DiCaprio, Kathleen M. ;
Geisbert, Thomas W. ;
Geisbert, Joan B. ;
Stroher, Ute ;
Hensley, Lisa E. ;
Grolla, Allen ;
Fritz, Elizabeth A. ;
Feldmann, Friederike ;
Feldmann, Heinz ;
Jones, Steven M. .
JOURNAL OF VIROLOGY, 2006, 80 (19) :9659-9666
[8]   A Syrian Golden Hamster Model Recapitulating Ebola Hemorrhagic Fever [J].
Ebihara, Hideki ;
Zivcec, Marko ;
Gardner, Donald ;
Falzarano, Darryl ;
LaCasse, Rachel ;
Rosenke, Rebecca ;
Long, Dan ;
Haddock, Elaine ;
Fischer, Elizabeth ;
Kawaoka, Yoshihiro ;
Feldmann, Heinz .
JOURNAL OF INFECTIOUS DISEASES, 2013, 207 (02) :306-318
[9]   Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages [J].
Feldmann, H ;
Bugany, H ;
Mahner, F ;
Klenk, HD ;
Drenckhahn, D ;
Schnittler, HJ .
JOURNAL OF VIROLOGY, 1996, 70 (04) :2208-2214
[10]  
Fox J., 2018, R COMPANION APPL REG