Sbe2p and Sbe22p, two homologous Golgi proteins involved in yeast cell wall formation

被引:36
作者
Santos, B [1 ]
Snyder, M [1 ]
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
关键词
D O I
10.1091/mbc.11.2.435
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The cell wall of fungal cells is important for cell integrity and cell morphogenesis and protects against harmful environmental conditions. The yeast cell wall is a complex structure consisting mainly of mannoproteins, glucan, and chitin. The molecular mechanisms by which the cell wall components are synthesized and transported to the cell surface are poorly understood. We have identified and characterized two homologous yeast proteins, Sbe2p and Sbe22p, through their suppression of a chs5 spa2 mutant strain defective in chitin synthesis and cell morphogenesis. Although sbe2 and sbe22 null mutants are viable, sbe2 sbe22 cells display several phenotypes indicative of defects in cell integrity and cell wall structure. First, sbe2 sbe22 cells display a sorbitol-remediable lysis defect at 37 degrees C and are hypersensitive to SDS and calcofluor. Second, electron microscopic analysis reveals that sbe2 sbe22 cells have an aberrant cell wall structure with a reduced mannoprotein layer. Finally, immunofluorescence experiments reveal that in small-budded cells, sbe2 sbe22 mutants mislocalize Chs3p, a protein involved in chitin synthesis. Ln addition, sbe2 sbe22 diploids have a bud-site selection defect, displaying a random budding pattern. A Sbe2p-GFP fusion protein localizes to cytoplasmic patches, and Sbe2p cofractionates with Golgi proteins. Deletion of CHS5, which encodes a Golgi protein involved in the transport of Chs3p to the cell periphery, is lethal in combination with disruption of SBE2 and SBE22. Thus, we suggest a model in which Sbe2p and Sbe22p are involved in the transport of cell wall components from the Golgi apparatus to the cell surface periphery in a pathway independent of Chs5p.
引用
收藏
页码:435 / 452
页数:18
相关论文
共 80 条
[1]  
[Anonymous], 1991, Methods Enzymol, V194, P1
[2]  
[Anonymous], ENTREP REGION DEV
[3]  
BALLOU CE, 1990, METHOD ENZYMOL, V185, P440
[4]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[5]   Cell wall integrity modulates RHO1 activity via the exchange factor ROM2 [J].
Bickle, M ;
Delley, PA ;
Schmidt, A ;
Hall, MN .
EMBO JOURNAL, 1998, 17 (08) :2235-2245
[6]   Role of small G proteins in yeast cell polarization and wall biosynthesis [J].
Cabib, E ;
Drgonova, J ;
Drgon, T .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :307-333
[7]   2 DIFFERENTIALLY REGULATED MESSENGER-RNAS WITH DIFFERENT 5' ENDS ENCODE SECRETED AND INTRACELLULAR FORMS OF YEAST INVERTASE [J].
CARLSON, M ;
BOTSTEIN, D .
CELL, 1982, 28 (01) :145-154
[8]   MATURATION OF THE YEAST PLASMA-MEMBRANE [H+]ATPASE INVOLVES PHOSPHORYLATION DURING INTRACELLULAR-TRANSPORT [J].
CHANG, A ;
SLAYMAN, CW .
JOURNAL OF CELL BIOLOGY, 1991, 115 (02) :289-295
[9]   PATTERNS OF BUD-SITE SELECTION IN THE YEAST SACCHAROMYCES-CEREVISIAE [J].
CHANT, J ;
PRINGLE, JR .
JOURNAL OF CELL BIOLOGY, 1995, 129 (03) :751-765
[10]   THE FUNCTIONING OF THE YEAST GOLGI-APPARATUS REQUIRES AN ER PROTEIN ENCODED BY ANP1, A MEMBER OF A NEW FAMILY OF GENES AFFECTING THE SECRETORY PATHWAY [J].
CHAPMAN, RE ;
MUNRO, S .
EMBO JOURNAL, 1994, 13 (20) :4896-4907