Data assimilation in large time-varying multidimensional fields

被引:16
作者
Asif, A
Moura, JMF
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[2] MIT, Dept Elect & Comp Sci, Cambridge, MA 02139 USA
关键词
computed imaging; data assimilation; Kalman-Bucy filter; Gauss-Markov fields; physical oceanography; satellite altimetry;
D O I
10.1109/83.799887
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
(I)n the physical sciences, e.g., meteorology and oceanography, combining measurements with the dynamics of the underlying models is usually referred to as data assimilation, Data assimilation improves the reconstruction of the image fields of interest. Assimilating data with algorithms like the Kalman-Bucy filter (KBf) is challenging due to computational cost which for two-dimensional (2-D) fields is of O(I-6) where I is the linear dimension of the domain. In this paper, we combine the block structure of the underlying dynamical models and the sparseness of the measurements (e.g., satellite scans) to develop four efficient implementations of the KBf that reduce its computational cost to O(I-5) in the case of the block KBf and the scalar KBf, and to O(I-4) in the case of the local block KBf (lbKBf) and the local scalar KBf (lsKBf), We illustrate the application of the lbKBf to assimilate altimetry satellite data in a Pacific equatorial basin.
引用
收藏
页码:1593 / 1607
页数:15
相关论文
共 23 条
[1]  
ASIF A, 1995, P IEEE INT C AC SPEE, V5, P2789
[2]  
ASIF A, 1996, SATELLITE DATA ASSIM
[3]  
Babuska I., 1988, Finite Elements, P199, DOI 10.1007/978-1-4612-3786-0_10
[4]   NONCAUSAL GAUSS-MARKOV RANDOM-FIELDS - PARAMETER STRUCTURE AND ESTIMATION [J].
BALRAM, N ;
MOURA, JMF .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) :1333-1355
[5]   A DISTRIBUTED AND ITERATIVE METHOD FOR SQUARE-ROOT FILTERING IN SPACE-TIME ESTIMATION [J].
CHIN, TM ;
KARL, WC ;
WILLSKY, AS .
AUTOMATICA, 1995, 31 (01) :67-82
[6]   SEQUENTIAL FILTERING FOR MULTIFRAME VISUAL RECONSTRUCTION [J].
CHIN, TM ;
KARL, WC ;
WILLSKY, AS .
SIGNAL PROCESSING, 1992, 28 (03) :311-333
[7]   Partial differential equations of mathematical physics [J].
Courant, R ;
Friedrichs, K ;
Lewy, H .
MATHEMATISCHE ANNALEN, 1928, 100 :32-74
[8]  
Duff IS, 1992, DIRECT METHODS SPARS
[9]   COMPUTING CERTAIN ELEMENTS OF INVERSE OF A SPARSE MATRIX [J].
ERISMAN, AM ;
TINNEY, WF .
COMMUNICATIONS OF THE ACM, 1975, 18 (03) :177-179
[10]   MULTIRESOLUTION OPTIMAL INTERPOLATION AND STATISTICAL-ANALYSIS OF TOPEX/POSEIDON SATELLITE ALTIMETRY [J].
FIEGUTH, PW ;
KARL, WC ;
WILLSKY, AS ;
WUNSCH, C .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (02) :280-292