An alternative use of biogas applied at the water denitrification

被引:33
作者
Houbron, E
Torrijos, M
Capdeville, B
机构
[1] Inst Tecnol Orizaba, Orizaba 94320, Veracruz, Mexico
[2] INRA, Lab Biotechnol & Environm, Narbonne, France
[3] INSA, Unite Rech & Traitement Biol, Toulouse, France
关键词
biogas; denitrification; denitrifying bacteria; methane; methanotrophic bacteria;
D O I
10.2166/wst.1999.0400
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The urban wastewater treatment plants of the 21st century will have to consider the removal of the carbon, nitrogen and phosphorus. On one hand, the usual exogenous carbon source for tertiary treatment are generally supplied as methanol, ethanol, acetic acid, etc. On the other band, the anaerobic wastewater treatment plant produces a biogas which contains up to 90 % of methane and which could be used as a cheap carbon source for denitrification. The first step of this work conducted in batch culture with or without copper, has shown that a consortium of methanotrophic and denitrifying bacteria are involved in this process. The methanotrophic bacteria oxidises methane under aerobic conditions via a specific enzyme (Methane Mono Oxygenase) and produces a soluble organic carbon in the liquid phase available for the denitrification. During the batch culture, when dissolved oxygen concentration decreases below 1 mg/l, a maximum denitrification rate of 3.3 mg N-NO3/l.h was obtained with 80 mu g/l of copper in the medium. The consumption rate of methane was 3.5 mmol CH4/l.h. The molar ratio of the oxygen/methane consumed was 1.27, and the mass ratio of C-CH4 consumed to N-NO3 eliminated was 10.9. During chemostat culture, denitrification on synthetic and real nitrifying water was tested. The stability of the consortium has been verified under different culture conditions. The variation of the dilution rate showed that the maximum one was 0.16 h(-1). The specific denitrification rate obtained with synthetic and real water were respectively 6.1 and 9.47 mg N-NO3/TSS.h, with a C/N mass ratio of 3.6 and 4.6. In chemostat, culture the efficiency of the methane oxidation and the denitrification was improved. (C) 1999 Published by Elsevier Science Ltd on behalf of the IAWQ. All rights reserved.
引用
收藏
页码:115 / 122
页数:8
相关论文
共 18 条
[1]  
BECCARI M, 1983, J WATER POLLUT CON F, V55, P58
[2]  
CHRISTENSEN MH, 1977, PROG WATER TECHNOL, V8, P509
[3]  
DALTON H, 1980, P 3 INT S MICR GROWT, P1
[4]  
DALTON H, 1984, P 4 INT S WASH, P75
[5]   ISOLATION OF BACTERIA CAPABLE OF UTILIZING METHANE AS A HYDROGEN DONOR IN PROCESS OF DENITRIFICATION [J].
DAVIES, TR .
WATER RESEARCH, 1973, 7 (04) :575-579
[6]  
Henry SM, 1990, MICROB, V20, P51
[7]  
HOUBRON E, 1995, THESIS INSA TOULOUSE
[8]  
HOUBRON E, 1993, P 1 IAWQ INT SPEC C, P547
[9]  
JOERGENSEN L, 1983, FEMS MICROBIOL LETT, V20, P331
[10]  
KNOWLES R, 1990, ACETYLENE INHIBITION, P349