The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy

被引:136
作者
Sadoshima, J
Montagne, O
Wang, Q
Yang, GP
Warden, J
Liu, J
Takagi, G
Karoor, V
Hong, C
Johnson, GL
Vatner, DE
Vatner, SF
机构
[1] Univ Med & Dent New Jersey, New Jersey Med Sch, Cardiovasc Res Inst, Dept Cell Biol & Mol Med, Newark, NJ 07103 USA
[2] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Newark, NJ 07103 USA
[3] Univ Colorado, Hlth Sci Ctr, Sch Med, Ctr Canc, Denver, CO 80262 USA
关键词
D O I
10.1172/JCI200214938
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Mitogen-activated protein kinase kinase kinase (MEKK1) mediates activation of c-Jun NH2-terminal kinase ONK). Although previous studies using cultured cardiac myocytes have suggested that the MEKK1-JNK pathway plays a key role in hypertrophy and apoptosis, its effects in cardiac hypertrophy and apoptosis are not fully understood in adult animals in vivo. We examined the role of the MEKK1-JNK pathway in pressure-overloaded hearts by using mice deficient in MEKK1. We found that transverse aortic banding significantly increased JNK activity in Mekk1(+/+)but not Mekk1(-/-) mice, indicating that MEKK1 mediates JNK activation by pressure overload. Nevertheless, pressure overload caused significant levels of cardiac hypertrophy and expression of atrial natriuretic factor in Mekk1(-/-) animals, which showed higher mortality and lung/body weight ratio than were seen in controls. Fourteen days after banding, Mekk1(-/-) hearts were dilated, and their left ventricular ejection fraction was low. Pressure overload caused elevated levels of apoptosis and inflammatory lesions in these mice and produced a smaller increase in TGF-beta and TNF-alpha expression than occurred in wildtype controls. Thus, MEKK1 appears to be required for pressure overload-induced JNK activation and cytokine upregulation but to be dispensable for pressure overload-induced cardiac hypertrophy. MEKK1 also prevents apoptosis and inflammation, thereby protecting against heart failure and sudden death following cardiac pressure overload.
引用
收藏
页码:271 / 279
页数:9
相关论文
共 45 条
[1]   Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis [J].
Andreka, P ;
Zang, J ;
Dougherty, C ;
Slepak, TI ;
Webster, KA ;
Bishopric, NH .
CIRCULATION RESEARCH, 2001, 88 (03) :305-312
[2]   Specific role of the extracellular signal-regulated kinase pathway in angiotensin II-induced cardiac hypertrophy in vitro [J].
Aoki, H ;
Richmond, M ;
Izumo, S ;
Sadoshima, J .
BIOCHEMICAL JOURNAL, 2000, 347 :275-284
[3]   β-Adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic Gsα mouse [J].
Asai, K ;
Yang, GP ;
Geng, YJ ;
Takagi, G ;
Bishop, S ;
Ishikawa, Y ;
Shannon, RP ;
Wagner, TE ;
Vatner, DE ;
Homcy, CJ ;
Vatner, SF .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (05) :551-558
[4]  
Bartram U, 2001, CIRCULATION, V103, P2745
[5]   Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart - p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion [J].
Bogoyevitch, MA ;
GillespieBrown, J ;
Ketterman, AJ ;
Fuller, SJ ;
BenLevy, R ;
Ashworth, A ;
Marshall, CJ ;
Sugden, PH .
CIRCULATION RESEARCH, 1996, 79 (02) :162-173
[6]   Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases [J].
Choukroun, G ;
Hajjar, R ;
Fry, S ;
del Monte, F ;
Haq, S ;
Guerrero, JL ;
Picard, M ;
Rosenzweig, A ;
Force, T .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (04) :391-398
[7]   Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy [J].
Choukroun, G ;
Hajjar, R ;
Kyriakis, JM ;
Bonventre, JV ;
Rosenzweig, A ;
Force, T .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (07) :1311-1320
[8]   Signal transduction by the JNK group of MAP kinases [J].
Davis, RJ .
CELL, 2000, 103 (02) :239-252
[9]  
Deswal A, 2001, CIRCULATION, V103, P2055
[10]   Cardiac overexpression of a Gq inhibitor blocks induction of extracellular signal-regulated kinase and cJun NH2-terminal kinase activity in in vivo pressure overload [J].
Esposito, G ;
Prasad, SVN ;
Rapacciuolo, A ;
Mao, L ;
Koch, WJ ;
Rockman, HA .
CIRCULATION, 2001, 103 (10) :1453-1458