Photosynthetic oxygen evolution is catalyzed at the manganese-containing active site of photosystem II (PSII). Amines are analogs of substrate water and inhibitors of oxygen evolution. Recently, the covalent incorporation of C-14 from [C-14]methylamine and benzylamine into PSII subunits has been demonstrated (Ouellette, A. J. A., Anderson, L. B., and Barry, B. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 2204-2209). To obtain more information concerning these labeling reactions. t-[C-14]butylamine and phenylhydrazine were employed as probes. Neither compound can be oxidized by a transamination or addition/elimination mechanism, but both can react with activated carbonyl groups, produced as a result of posttranslational modification of amino acid residues, to give amine-derived adducts. C-14 incorporation into the PSII subunits D2/D1 and CP47 was obtained upon treatment of PSII with either t-[C-14]butylamine or [C-14]phenylhydrazine. For t-butyl-amine and methylamine, the amount of labeling increased when PSII was treated with denaturing agents. Labeling of CP47, D2, and D1 with methylamine and phenylhydrazine approached a one-to-one stoichiometry, assuming that D2 and D1 each have one binding site. Evidence was obtained suggesting that reductive stabilization and/or access are modulated by PSII light reactions. These results support the proposal that PSII subunits D2, D1, and CP47 contain quinocofactors and that access to these sites is sterically limited.