Stability of ion implanted single-walled carbon nanotubes: Thermogravimetric and Raman analysis

被引:20
作者
Adhikari, Ananta R. [1 ]
Huang, Mengbing
Bakhru, Hassaram
Vajtai, Robert
Ryu, Chang Y.
Ajayan, Pulickel M.
机构
[1] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA
[2] Rensselaer Polytech Inst, Rensselaer Nanotechnol Ctr, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Chem & Chem Biol, Troy, NY 12180 USA
[4] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
MICROCRYSTALLINE GRAPHITE; DEFECTS; TEMPERATURES; SCATTERING; SPECTRUM; BUNDLES; FILMS;
D O I
10.1063/1.2353643
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, the effect of different ions (hydrogen, helium, and neon) implanted on single-walled carbon nanotube (SWNT) is being analyzed using thermogravimetric analysis (TGA), Raman scattering, and x-ray photoelectron spectroscopy (XPS). The TGA result shows that the temperature for maximum decomposition rate (T(max)) increases at relatively low doses, i.e., by about 30 degrees C after hydrogen ion implantation (at the ion dose of 10(15) cm(-2)), 17 degrees C after helium ion implantation (at the ion dose of 10(13) cm(-2)), and contributes no significant enhancement after neon implantation for all doses. The increase of T(max) indicates that small mass ion can be utilized to improve the thermal-oxidative stability of SWNTs. Raman scattering and XPS were used to monitor the lattice damage from ion implantation and chemical bonding states of the materials. The results indicated the material rigidity for low doses of hydrogen and helium, while the application of higher doses of neon caused the material to transform towards amorphous carbon (a-C). (c) 2006 American Institute of Physics.
引用
收藏
页数:5
相关论文
共 31 条
[1]   RAMAN-SPECTRA OF MICROCRYSTALLINE GRAPHITE AND A-C-H FILMS EXCITED AT 1064 NM [J].
BARBAROSSA, V ;
GALLUZZI, F ;
TOMACIELLO, R ;
ZANOBI, A .
CHEMICAL PHYSICS LETTERS, 1991, 185 (1-2) :53-55
[2]   Resonant electron scattering by defects in single-walled carbon nanotubes [J].
Bockrath, M ;
Liang, WJ ;
Bozovic, D ;
Hafner, JH ;
Lieber, CM ;
Tinkham, M ;
Park, HK .
SCIENCE, 2001, 291 (5502) :283-285
[3]   Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: Evidence for the role of defect sites in carbon nanotube chemistry [J].
Bom, D ;
Andrews, R ;
Jacques, D ;
Anthony, J ;
Chen, BL ;
Meier, MS ;
Selegue, JP .
NANO LETTERS, 2002, 2 (06) :615-619
[4]   Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study [J].
Bronikowski, MJ ;
Willis, PA ;
Colbert, DT ;
Smith, KA ;
Smalley, RE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2001, 19 (04) :1800-1805
[5]  
Castiglioni C, 2003, SYNTHETIC MET, V139, P885, DOI 10.1016/S0379-6776(03)00305-9
[6]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93
[7]   THE MICROSTRUCTURAL STUDIES OF HYDROGENATED AMORPHOUS-CARBON FILMS BY RAMAN-SPECTRA [J].
CHENG, GX ;
GU, SL ;
HE, YL ;
WANG, ZH ;
XIA, H ;
ZHANG, W ;
ZHANG, XK .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1993, 139 (02) :459-469
[8]   Nanotube nanodevice [J].
Collins, PG ;
Zettl, A ;
Bando, H ;
Thess, A ;
Smalley, RE .
SCIENCE, 1997, 278 (5335) :100-103
[9]   Review of hydrogen storage by adsorption in carbon nanotubes [J].
Darkrim Lamari, F ;
Malbrunot, P ;
Tartaglia, GP .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (02) :193-202
[10]  
Dresselhaus G, 1998, Physical Properties of Carbon Nanotubes