Starch synthesis in arabidopsis. Granule synthesis, composition, and structure

被引:133
作者
Zeeman, SC
Tiessen, A
Pilling, E
Kato, KL
Donald, AM
Smith, AM
机构
[1] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England
[2] John Innes Ctr Plant Sci Res, Norwich NR4 7UH, Norfolk, England
关键词
D O I
10.1104/pp.003756
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The aim of this work was to characterize starch synthesis, composition, and granule structure in Arabidopsis leaves. First, the potential role of starch-degrading enzymes during starch accumulation was investigated. To discover whether simultaneous synthesis and degradation of starch occurred during net accumulation, starch was labeled by supplying (CO2)-C-14 to intact, photosynthesizing plants. Release of this label from starch was monitored during a chase period in air, using different light intensities to vary the net rate of starch synthesis. No release of label was detected unless there was net degradation of starch during the chase. Similar experiments were performed on a mutant line (dbe1) that accumulates the soluble polysaccharide, phytoglycogen. Label was not released from phytoglycogen during the chase indicating that even when in a soluble form, glucan is not appreciably degraded during accumulation. Second, the effect on starch composition of growth conditions and mutations causing starch accumulation was studied. An increase in starch content correlated with an increased amylose content of the starch and with an increase in the ratio of granule-bound starch synthase to soluble starch synthase activity. Third, the structural organization and morphology of Arabidopsis starch granules was studied. The starch granules were birefringent, indicating a radial organization of the polymers, and x-ray scatter analyses revealed that granules contained alternating crystalline and amorphous lamellae with a periodicity of 9 nm. Granules from the wild type and the high-starch mutant sex1 were flattened and discoid, whereas those of the high-starch mutant sex4 were larger and more rounded. These larger granules contained "growth rings" with a periodicity of 200 to 300 mu. We conclude that leaf starch is synthesized without appreciable turnover and comprises similar polymers and contains similar levels of molecular organization to storage starches, making Arabidopsis an excellent model system for studying granule biosynthesis.
引用
收藏
页码:516 / 529
页数:14
相关论文
共 44 条
[1]  
Badenhuizen NP, 1969, BIOGENESIS STARCH GR
[2]   THE WRINKLED-SEED CHARACTER OF PEA DESCRIBED BY MENDEL IS CAUSED BY A TRANSPOSON-LIKE INSERTION IN A GENE ENCODING STARCH-BRANCHING ENZYME [J].
BHATTACHARYYA, MK ;
SMITH, AM ;
ELLIS, THN ;
HEDLEY, C ;
MARTIN, C .
CELL, 1990, 60 (01) :115-122
[3]  
Blanshard J. M. V., 1987, STARCH PROPERTIES PO, P16
[4]   STARCH BRANCHING ENZYMES BELONGING TO DISTINCT ENZYME FAMILIES ARE DIFFERENTIALLY EXPRESSED DURING PEA EMBRYO DEVELOPMENT [J].
BURTON, RA ;
BEWLEY, JD ;
SMITH, AM ;
BHATTACHARYYA, MK ;
TATGE, H ;
RING, S ;
BULL, V ;
HAMILTON, WDO ;
MARTIN, C .
PLANT JOURNAL, 1995, 7 (01) :3-15
[5]  
BUTTROSE MS, 1963, STARKE, V15, P85
[6]   MUTANTS OF ARABIDOPSIS WITH ALTERED REGULATION OF STARCH DEGRADATION [J].
CASPAR, T ;
LIN, TP ;
KAKEFUDA, G ;
BENBOW, L ;
PREISS, J ;
SOMERVILLE, C .
PLANT PHYSIOLOGY, 1991, 95 (04) :1181-1188
[7]   The relationship between the rate of starch synthesis, the adenosine 5′-diphosphoglucose concentration and the amylose content of starch in developing pea embryos [J].
Clarke, BR ;
Denyer, K ;
Jenner, CF ;
Smith, AM .
PLANTA, 1999, 209 (03) :324-329
[8]   Genetic and biochemical evidence for the involvement of α-1,4 glucanotransferases in amylopectin synthesis [J].
Colleoni, C ;
Dauvillée, D ;
Mouille, G ;
Buléon, A ;
Gallant, D ;
Bouchet, B ;
Morell, M ;
Samuel, M ;
Delrue, B ;
d'Hulst, C ;
Bliard, C ;
Nuzillard, JM ;
Ball, S .
PLANT PHYSIOLOGY, 1999, 120 (04) :993-1003
[9]   A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis [J].
Critchley, JH ;
Zeeman, SC ;
Takaha, T ;
Smith, AM ;
Smith, SM .
PLANT JOURNAL, 2001, 26 (01) :89-100
[10]  
DENYER K, 1995, PLANT CELL ENVIRON, V18, P1019, DOI 10.1111/j.1365-3040.1995.tb00612.x