A new version of the fast multipole method for screened Coulomb interactions in three dimensions

被引:106
作者
Greengard, LF
Huang, JF
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
translation operators; fast multipole method; screened Coulomb interaction;
D O I
10.1006/jcph.2002.7110
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new version of the fast multipole method (FMM) for screened Coulomb interactions in three dimensions. Existing schemes can compute such interactions in O(N) time, where N denotes the number of particles. The constant implicit in the O(N) notation, however, is dominated by the expense of translating far-field spherical harmonic expansions to local ones. For each box in the FMM data structure, this requires 189p(4) operations per box, where p is the order of the expansions used. The new formulation relies on an expansion in evanescent plane waves, with which the amount of work can be reduced to 40p(2) + 6p(3) operations per box. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:642 / 658
页数:17
相关论文
共 19 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]  
Biedenharn L. S., 1981, ANGULAR MOMENTUM QUA
[3]   A fast adaptive multipole algorithm for calculating screened Coulomb (Yukawa) interactions [J].
Boschitsch, AH ;
Fenley, MO ;
Olson, WK .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) :212-241
[4]   A fast adaptive multipole algorithm in three dimensions [J].
Cheng, H ;
Greengard, L ;
Rokhlin, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 155 (02) :468-498
[5]   MULTIPOLE MATRIX ELEMENTS OF TRANSLATION OPERATOR [J].
DANOS, M ;
MAXIMON, LC .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (05) :766-&
[6]   MULTIPOLE TRANSLATION THEORY FOR THE 3-DIMENSIONAL LAPLACE AND HELMHOLTZ EQUATIONS [J].
EPTON, MA ;
DEMBART, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (04) :865-897
[7]   Accelerating fast multipole methods for the Helmholtz equation at low frequencies [J].
Greengard, L ;
Huang, JF ;
Rokhlin, V ;
Wandzura, S .
IEEE COMPUTATIONAL SCIENCE & ENGINEERING, 1998, 5 (03) :32-38
[8]  
GREENGARD L, 1988, LECT NOTES MATH, V1360, P121
[9]  
Greengard L., 1997, Acta Numerica, V6, P229, DOI 10.1017/S0962492900002725
[10]  
Greengard L., 1988, The rapid evaluation of potential fields in particle systems