Linear programming in O(n3/ln n/L) operations

被引:76
作者
Anstreicher, KM [1 ]
机构
[1] Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
[2] Catholic Univ Louvain, Ctr Operat Res & Econometr, B-3000 Louvain, Belgium
关键词
linear programming; interior point algorithm; partial updating; conjugate gradient method;
D O I
10.1137/S1052623497323194
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the complexity to solve linear programming problems, using standard linear algebra, can be reduced to O([n(3)/ln n]L) operations, where n is the number of variables in a standard-form problem with integer data of bit size L. Our technique combines partial updating with a preconditioned conjugate gradient method, in a scheme first suggested by Nesterov and Nemirovskii.
引用
收藏
页码:803 / 812
页数:10
相关论文
共 15 条
[1]   A STANDARD FORM VARIANT, AND SAFEGUARDED LINESEARCH, FOR THE MODIFIED KARMARKAR ALGORITHM [J].
ANSTREICHER, KM .
MATHEMATICAL PROGRAMMING, 1990, 47 (03) :337-351
[2]  
COPPERSMITH D, 1986, P 19 ANN ACM S THEOR, P1
[3]  
Gill M., 1981, Practical Optimization
[4]  
GONZAGA CC, 1987, PROGR MATH PROGRAMMI
[5]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[6]  
Luenberger D.G., 1984, LINEAR NONLINEAR PRO
[7]   INTERIOR PATH FOLLOWING PRIMAL-DUAL ALGORITHMS .1. LINEAR-PROGRAMMING [J].
MONTEIRO, RDC ;
ADLER, I .
MATHEMATICAL PROGRAMMING, 1989, 44 (01) :27-41
[8]   ACCELERATION AND PARALLELIZATION OF THE PATH-FOLLOWING INTERIOR POINT METHOD FOR A LINEARLY CONSTRAINED CONVEX QUADRATIC PROBLEM [J].
Nesterov, Y. ;
Nemirovsky, A. .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (04) :548-564
[9]  
Nesterov Y., 1994, INTERIOR POINT POLYN
[10]  
Nesterov Y., 1996, INTRO LECT CONVEX PR, VI