Kinetic significance of GroEL(14)center dot(GroES(7))(2) complexes in molecular chaperone activity

被引:37
作者
Corrales, FJ
Fersht, AR
机构
[1] UNIV CAMBRIDGE,MRC,UNIT PROT FUNCT & DESIGN,CAMBRIDGE CB2 1EW,ENGLAND
[2] UNIV CAMBRIDGE,DEPT CHEM,CAMBRIDGE CTR PROT ENGN,CAMBRIDGE CB2 1EW,ENGLAND
来源
FOLDING & DESIGN | 1996年 / 1卷 / 04期
关键词
barnase; chaperonin; football; protein folding;
D O I
10.1016/S1359-0278(96)00040-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Symmetrical GroEL(14).(GroES(7))(2) complexes, nicknamed 'footballs', have been observed by electron microscopy to form in the presence of excess ATP, But the significance of these footballs in the molecular chaperone cycle is controversial. We have analyzed the folding of barnase in the presence of GroEL, GroES and various nucleotides to probe the importance of footballs. Results: A stoichiometric concentration of GroES, binds to the GroEL(14). nucleotide . denatured barnase complex to produce a slow-folding state. Higher concentrations of GroES in the presence of ATP or AMP-PNP, but not ADP, produce a proportion of a fast-folding state, rising to 50% at a GroES(7): GroEL(14) stoichiometry of greater than or equal to 2:1. Conclusions: These results imply that there is a transiently formed GroEL(14).(GroES(7))(2) . denatured protein complex that dissociates into a 50:50 mixture of slow-folding cia and fast-folding trans GroEL(14). GroES(7) . denatured protein complexes. The transient formation of a symmetrical football could provide a means of opening the cage that encapsulates folded cis-bound proteins. (C) Current Biology Ltd
引用
收藏
页码:265 / 273
页数:9
相关论文
共 27 条
  • [1] CHARACTERIZATION OF A FUNCTIONAL GROEL(14)(GROES(7))(2) CHAPERONIN HETERO-OLIGOMER
    AZEM, A
    KESSEL, M
    GOLOUBINOFF, P
    [J]. SCIENCE, 1994, 265 (5172) : 653 - 656
  • [2] The protein-folding activity of chaperonins correlates with the symmetric GroEL(14)(GroES(7))(2) heterooligomer
    Azem, A
    Diamant, S
    Kessel, M
    Weiss, C
    Goloubinoff, P
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (26) : 12021 - 12025
  • [3] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [4] THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM
    BRAIG, K
    OTWINOWSKI, Z
    HEGDE, R
    BOISVERT, DC
    JOACHIMIAK, A
    HORWICH, AL
    SIGLER, PB
    [J]. NATURE, 1994, 371 (6498) : 578 - 586
  • [5] CONFORMATIONAL VARIABILITY IN THE REFINED STRUCTURE OF THE CHAPERONIN GROEL AT 2.8 ANGSTROM RESOLUTION
    BRAIG, K
    ADAMS, PD
    BRUNGER, AT
    [J]. NATURE STRUCTURAL BIOLOGY, 1995, 2 (12): : 1083 - 1094
  • [6] CHANDRASEKHAR GN, 1986, J BIOL CHEM, V261, P2414
  • [7] LOCATION OF A FOLDING PROTEIN AND SHAPE CHANGES IN GROEL-GROES COMPLEXES IMAGED BY CRYOELECTRON MICROSCOPY
    CHEN, S
    ROSEMAN, AM
    HUNTER, AS
    WOOD, SP
    BURSTON, SG
    RANSON, NA
    CLARKE, AR
    SAIBIL, HR
    [J]. NATURE, 1994, 371 (6494) : 261 - 264
  • [8] CORRALES FJ, 1996, IN PRESS P NATL ACAD
  • [9] CORRALES FJ, 1995, P NATL ACAD SCI USA, V92, P5328
  • [10] Protein folding in the cell: Competing models of chaperonin function
    Ellis, RJ
    Hartl, FU
    [J]. FASEB JOURNAL, 1996, 10 (01) : 20 - 26