Differential Charge Polarization of Axial Histidines in Bacterial Reaction Centers Balances the Asymmetry of the Special Pair

被引:15
作者
Alia, A. [1 ]
Wawrzyniak, Piotr K. [1 ]
Janssen, Geertje J. [1 ]
Buda, Francesco [1 ]
Matysik, Jorg [1 ]
de Groot, Huub J. M. [1 ]
机构
[1] Leiden Inst Chem, Gorlaeus Lab, SSNMR, NL-2300 RA Leiden, Netherlands
关键词
PHOTOSYNTHETIC REACTION-CENTER; ELECTRON-TRANSFER; DYNAMICS; STATE;
D O I
10.1021/ja9028507
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
(Graph Presented) In photosynthesis, light energy is transformed into chemical energy that sustains most forms of life on earth. Solid-state NMR spectroscopy in conjunction with density functional theory modeling can resolve electronic structure down to the atomic level in large membrane proteins. In this work, we have used this technique to address the mechanisms underlying the photochemical reactivity of the special pair in the bacterial reaction center. For charge separation, the electrostatics is important, as the Coulomb barrier must be overcome. On the basis of 15N NMR data, we resolve a subtle charge-balancing mechanism in the ground state by an axial histidine that is connected to the central Mg2+ on one side and hydrogen-bonded on the other side. Formation of the hydrogen bond between BChl-a-His and H2O leads to a difference in electron density relative to the separate BChl-a-His and H2O fragments, with excess positive charge on the imidazole ring. This can lower the kinetic barrier for accommodating the different length scales of electron and proton transfer for separation of spin and charge in a bidirectional proton-coupled electron-transfer mechanism. © 2009 American Chemical Society.
引用
收藏
页码:9626 / 9627
页数:2
相关论文
共 13 条
[1]   Ultrahigh field MAS NMR dipolar correlation spectroscopy of the histidine residues in light-harvesting complex II from photosynthetic bacteria reveals partial internal charge transfer in the B850/His complex [J].
Alia ;
Matysik, J ;
Soede-Huijbregts, C ;
Baldus, M ;
Raap, J ;
Lugtenburg, J ;
Gast, P ;
van Gorkom, HJ ;
Hoff, AJ ;
de Groot, HJM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (20) :4803-4809
[2]   EPR, ENDOR, and Special TRIPLE measurements of P•+ in wild type and modified reaction centers from Rb. sphaeroides [J].
Allen, J. P. ;
Cordova, J. M. ;
Jolley, C. C. ;
Murray, T. A. ;
Schneider, J. W. ;
Woodbury, N. W. ;
Williams, J. C. ;
Niklas, J. ;
Klihm, G. ;
Reus, M. ;
Lubitz, W. .
PHOTOSYNTHESIS RESEARCH, 2009, 99 (01) :1-10
[3]  
DAVISO E, 2008, THESIS LEIDEN U NETH
[4]   STRUCTURE AND FUNCTION OF THE PHOTOSYNTHETIC REACTION-CENTER FROM RHODOBACTER-SPHAEROIDES [J].
ERMLER, U ;
MICHEL, H ;
SCHIFFER, M .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1994, 26 (01) :5-15
[5]  
HODGKISS JM, 2006, HDB HYDROGEN TRANSFE
[6]   Coherence dynamics in photosynthesis: Protein protection of excitonic coherence [J].
Lee, Hohjai ;
Cheng, Yuan-Chung ;
Fleming, Graham R. .
SCIENCE, 2007, 316 (5830) :1462-1465
[7]   Excited-state electronic asymmetry of the special pair in photosynthetic reaction center mutants: Absorption and stark spectroscopy [J].
Moore, LJ ;
Zhou, HL ;
Boxer, SG .
BIOCHEMISTRY, 1999, 38 (37) :11949-11960
[8]   13C chemical shift map of the active cofactors in photosynthetic reaction centers of Rhodobacter sphaeroides revealed by photo-CIDNP MAS NMR [J].
Prakash, Shipra ;
Alia, A. ;
Gast, Peter ;
de Groot, Huub J. M. ;
Jeschke, Gunnar ;
Matysik, Joerg .
BIOCHEMISTRY, 2007, 46 (31) :8953-8960
[9]   Coupling of light-induced electron transfer to proton uptake in photosynthesis [J].
Remy, A ;
Gerwert, K .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (08) :637-644
[10]   Brominated lipids identify lipid binding sites on the surface of the reaction center from Rhodobacter sphaeroides [J].
Roszak, Aleksander W. ;
Gardiner, Alastair T. ;
Isaacs, Neil W. ;
Cogdell, Richard J. .
BIOCHEMISTRY, 2007, 46 (11) :2909-2916