Mechanical stress activates xanthine oxidoreductase through MAP kinase-dependent pathways

被引:85
作者
Abdulnour, Raja-Elie E.
Peng, Xinqi
Finigan, Jay H.
Han, Eugenia J.
Hasan, Emile J.
Birukov, Konstantin G.
Reddy, Sekhar P.
Watkins, James E., III
Kayyali, Usamah S.
Garcia, Joe G. N.
Tuder, Rubin M.
Hassoun, Paul M.
机构
[1] Division of Pulmonary and Critical Care Medicine, Bloomberg School of Public Health, Baltimore, MD
[2] Department of Medicine, Department of Environmental Health Sciences, Bloomberg School of Public Health, Baltimore, MD
[3] Division of Cardiopulmonary Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
[4] Pulmonary and Critical Care Division, Tupper Research Institute, Tufts University School of Medicine, Boston, MA
[5] Div. of Pulmonary and Critical Care Medicine, Baltimore, MD 21224
关键词
D O I
10.1152/ajplung.00453.2005
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Xanthine oxidoreductase (XOR) plays a prominent role in acute lung injury because of its ability to generate reactive oxygen species. We investigated the role of XOR in ventilator-induced lung injury (VILI). Male C57BL/6J mice were assigned to spontaneous ventilation (sham) or mechanical ventilation (MV) with low (7 ml/kg) and high tidal volume (20 ml/kg) for 2 h after which lung XOR activity and expression were measured and the effect of the specific XOR inhibitor allopurinol on pulmonary vascular leakage was examined. In separate experiments, rat pulmonary microvascular endothelial cells (RPMECs) were exposed to cyclic stretch (5% and 18% elongation, 20 cycles/min) for 2 h before intracellular XOR activity measurement. Lung XOR activity was significantly increased at 2 h of MV without changes in XOR expression. There was evidence of p38 MAP kinase, ERK1/2, and ERK5 phosphorylation, but no change in JNK phosphorylation. Evans blue dye extravasation and bronchoalveolar lavage protein concentration were significantly increased in response to MV, changes that were significantly attenuated by pretreatment with allopurinol. Cyclic stretch of RPMECs also caused MAP kinase phosphorylation and a 1.7-fold increase in XOR activity, which was completely abrogated by pretreatment of the cells with specific MAP kinase inhibitors. We conclude that XOR enzymatic activity is significantly increased by mechanical stress via activation of p38 MAP kinase and ERK and plays a critical role in the pathogenesis of pulmonary edema associated with VILI.
引用
收藏
页码:L345 / L353
页数:9
相关论文
共 38 条
[1]  
*AC RESP DISTR SYN, 2000, NEW ENGL J MED, V342, P1301, DOI DOI 10.1056/NEJM200005043421801
[2]   SPECIES DISTRIBUTION OF XANTHINE OXIDASE [J].
ALKHALIDI, UA ;
CHAGLASSIAN, TH .
BIOCHEMICAL JOURNAL, 1965, 97 (01) :318-+
[3]   A SENSITIVE FLUOROMETRIC ASSAY FOR MEASURING XANTHINE DEHYDROGENASE AND OXIDASE IN TISSUES [J].
BECKMAN, JS ;
PARKS, DA ;
PEARSON, JD ;
MARSHALL, PA ;
FREEMAN, BA .
FREE RADICAL BIOLOGY AND MEDICINE, 1989, 6 (06) :607-615
[4]  
BERRY CE, 2003, J PHYSL
[5]   Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch [J].
Birukov, KG ;
Jacobson, JR ;
Flores, AA ;
Ye, SQ ;
Birukova, AA ;
Verin, AD ;
Garcia, JGN .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2003, 285 (04) :L785-L797
[6]   ADVERSE-EFFECTS OF LARGE TIDAL VOLUME AND LOW PEEP IN CANINE ACID ASPIRATION [J].
CORBRIDGE, TC ;
WOOD, LDH ;
CRAWFORD, GP ;
CHUDOBA, MJ ;
YANOS, J ;
SZNAJDER, JI .
AMERICAN REVIEW OF RESPIRATORY DISEASE, 1990, 142 (02) :311-315
[7]   Regulation of intracellular xanthine oxidase by endothelial-derived nitric oxide [J].
Cote, CG ;
Yu, FS ;
Zulueta, JJ ;
Vosatka, RJ ;
Hassoun, PM .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 1996, 271 (05) :L869-L874
[9]   Ventilator-induced lung injury - Lessons from experimental studies [J].
Dreyfuss, D ;
Saumon, G .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1998, 157 (01) :294-323
[10]   HIGH INFLATION PRESSURE PULMONARY-EDEMA - RESPECTIVE EFFECTS OF HIGH AIRWAY PRESSURE, HIGH TIDAL VOLUME, AND POSITIVE END-EXPIRATORY PRESSURE [J].
DREYFUSS, D ;
SOLER, P ;
BASSET, G ;
SAUMON, G .
AMERICAN REVIEW OF RESPIRATORY DISEASE, 1988, 137 (05) :1159-1164