An efficient clustering scheme using support vector methods

被引:16
作者
Nath, J. Saketha [1 ]
Shevade, S. K.
机构
[1] Indian Inst Sci, Supercomp Educ & Res Ctr, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
关键词
clustering; support vector machines; R*-tree;
D O I
10.1016/j.patcog.2006.03.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support vector clustering involves three steps-solving an optimization problem, identification of clusters and tuning of hyper-parameters. In this paper, we introduce a pre-processing step that eliminates data points from the training data that are not crucial for clustering. Pre-processing is efficiently implemented using the R*-tree data structure. Experiments on real-world and synthetic datasets show that pre-processing drastically decreases the run-time of the clustering algorithm. Also, in many cases reduction in the number of support vectors is achieved. Further, we suggest an improvement for the step of identification of clusters. (c) 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1473 / 1480
页数:8
相关论文
共 8 条
[1]  
BECKMANN N, 1990, SIGMOD REC, V19, P322, DOI 10.1145/93605.98741
[2]   Support vector clustering [J].
Ben-Hur, A ;
Horn, D ;
Siegelmann, HT ;
Vapnik, V .
JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) :125-137
[3]  
Bradley P. S., 1998, Proceedings Fourth International Conference on Knowledge Discovery and Data Mining, P9
[4]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[5]  
Ester M., 1996, Proc. Second Int. Conf. Knowl. Discov. Data Min, P226, DOI DOI 10.5555/3001460.3001507
[6]  
Fletcher R., 2003, PRACTICAL METHODS OP, V2
[7]   Data clustering: A review [J].
Jain, AK ;
Murty, MN ;
Flynn, PJ .
ACM COMPUTING SURVEYS, 1999, 31 (03) :264-323
[8]  
Platt JC, 1999, ADVANCES IN KERNEL METHODS, P185