Biased tomography schemes:: An objective approach

被引:82
作者
Hradil, Z.
Mogilevtsev, D.
Rehacek, J.
机构
[1] Palacky Univ, Dept Opt, Olomouc 77200, Czech Republic
[2] Natl Acad Sci, Inst Phys, Minsk 220072, BELARUS
[3] Univ Fed Alagoas, Dept Fis, BR-57072970 Maceio, AL, Brazil
关键词
D O I
10.1103/PhysRevLett.96.230401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on an intrinsic relationship between the maximum-likelihood quantum-state estimation and the representation of the signal. A quantum analogy of the transfer function determines the space where the reconstruction should be done without the need for any ad hoc truncations of the Hilbert space. An illustration of this method is provided by a simple yet practically important tomography of an optical signal registered by realistic binary detectors.
引用
收藏
页数:4
相关论文
共 22 条
[1]   Direct measurement of the Wigner function by photon counting [J].
Banaszek, K ;
Radzewicz, C ;
Wódkiewicz, K ;
Krasinski, JS .
PHYSICAL REVIEW A, 1999, 60 (01) :674-677
[2]   Direct probing of quantum phase space by photon counting [J].
Banaszek, K ;
Wodkiewicz, K .
PHYSICAL REVIEW LETTERS, 1996, 76 (23) :4344-4347
[3]   Quantum homodyne tomography with a priori constraints [J].
Banaszek, K .
PHYSICAL REVIEW A, 1999, 59 (06) :4797-4800
[4]  
BARLOW R, 1989, STATISTICS, P90
[5]   DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1882-+
[6]   ORDERED EXPANSIONS IN BOSON AMPLITUDE OPERATORS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1857-+
[7]  
CRAMER H, 1946, METH METHODS STAT
[8]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[9]   Iterative maximum-likelihood reconstruction in quantum homodyne tomography [J].
Lvovsky, AI .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (06) :S556-S559
[10]  
Mandel L., 1995, EBL SCHWEITZER