The consequences of translational and rotational entropy lost by small molecules on binding to proteins

被引:151
作者
Murray, CW [1 ]
Verdonk, ML [1 ]
机构
[1] Astex Technol Ltd, Cambridge CB4 0WE, England
关键词
rigid-body entropy; fragment binding; structure-based design; empirical scoring functions;
D O I
10.1023/A:1022446720849
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
When a small molecule binds to a protein, it loses a significant amount of rigid body translational and rotational entropy. Estimates of the associated energy barrier vary widely in the literature yet accurate estimates are important in the interpretation of results from fragment-based drug discovery techniques. This paper describes an analysis that allows the estimation of the rigid body entropy barrier from the increase in binding affinities that results when two fragments of known affinity and known binding mode are joined together. The paper reviews the relatively rare number of examples where good quality data is available. From the analysis of this data, we estimate that the barrier to binding, due to the loss of rigid-body entropy, is 15-20 kJ/mol, i.e. around 3 orders of magnitude in affinity at 298 K. This large barrier explains why it is comparatively rare to observe multiple fragments binding to non-overlapping adjacent sites in enzymes. The barrier is also consistent with medicinal chemistry experience where small changes in the critical binding regions of ligands are often poorly tolerated by enzymes.
引用
收藏
页码:741 / 753
页数:13
相关论文
共 50 条
[1]   FUNCTIONAL-GROUP CONTRIBUTIONS TO DRUG RECEPTOR INTERACTIONS [J].
ANDREWS, PR ;
CRAIK, DJ ;
MARTIN, JL .
JOURNAL OF MEDICINAL CHEMISTRY, 1984, 27 (12) :1648-1657
[2]   High-throughput crystallography for lead discovery in drug design [J].
Blundell, TL ;
Jhoti, H ;
Abell, C .
NATURE REVIEWS DRUG DISCOVERY, 2002, 1 (01) :45-54
[3]   Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening [J].
Boehm, HJ ;
Boehringer, M ;
Bur, D ;
Gmuender, H ;
Huber, W ;
Klaus, W ;
Kostrewa, D ;
Kuehne, H ;
Luebbers, T ;
Meunier-Keller, N .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (14) :2664-2674
[4]   Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs [J].
Bohm, HJ .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1998, 12 (04) :309-323
[6]   Empirical scoring functions .1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes [J].
Eldridge, MD ;
Murray, CW ;
Auton, TR ;
Paolini, GV ;
Mee, RP .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1997, 11 (05) :425-445
[7]   Site-directed ligand discovery [J].
Erlanson, DA ;
Braisted, AC ;
Raphael, DR ;
Randal, M ;
Stroud, RM ;
Gordon, EM ;
Wells, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (17) :9367-9372
[8]   The SHAPES strategy: an NMR-based approach for lead generation in drug discovery [J].
Fejzo, J ;
Lepre, CA ;
Peng, JW ;
Bemis, GW ;
Ajay ;
Murcko, MA ;
Moore, JM .
CHEMISTRY & BIOLOGY, 1999, 6 (10) :755-769
[9]   THE PRICE OF LOST FREEDOM - ENTROPY OF BIMOLECULAR COMPLEX-FORMATION [J].
FINKELSTEIN, AV ;
JANIN, J .
PROTEIN ENGINEERING, 1989, 3 (01) :1-3
[10]   The statistical-thermodynamic basis for computation of binding affinities: A critical review [J].
Gilson, MK ;
Given, JA ;
Bush, BL ;
McCammon, JA .
BIOPHYSICAL JOURNAL, 1997, 72 (03) :1047-1069