Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water

被引:251
作者
Yang, Kun
Xing, Baoshan [1 ]
机构
[1] Univ Massachusetts, Dept Plant Soil & Insect Sci, Amherst, MA 01003 USA
[2] Zhejiang Univ, Dept Environm Sci, Hangzhou 310028, Peoples R China
关键词
desorption; polycyclic aromatic hydrocarbons; carbon nanotubes; fullerene; hysteresis; sorption;
D O I
10.1016/j.envpol.2006.04.020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Desorption behavior of pyrene, phenanthrene and naphthalene from fullerene, single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) was examined. Available adsorption space of carbon nanotubes (CNTs) was found to be the cylindrical external surface, neither the inner cavities nor inter-wall spaces due to impurities in the CNTs and restricted spaces (0.335 nm) of the MWCNTs, respectively. Desorption hysteresis was observed for fullerene but not for CNTs. Deformation-rearrangement was proposed to explain the hysteresis of polycyclic aromatic hydrocarbons (PAHs) for fullerene, due to the formation of closed interstitial spaces in spherical fullerene aggregates. However, long, cylindrical carbon nanotubes could not form such closed interstitial spaces in their aggregates due to their length, thus showing no significant hysteresis. High adsorption capacity and reversible adsorption of PAHs on CNTs imply the potential release of PAHs if PAH-adsorbed CNTs are inhaled by animals and humans, leading to a high environmental and public health risk. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:529 / 537
页数:9
相关论文
共 39 条
[1]   Temporal changes in nitrogen adsorption properties of single-walled carbon nanotubes [J].
Agnihotri, S ;
Rostam-Abadi, M ;
Rood, MJ .
CARBON, 2004, 42 (12-13) :2699-2710
[2]   Particle toxicology: From coal mining to nanotechnology [J].
Borm, PJA .
INHALATION TOXICOLOGY, 2002, 14 (03) :311-324
[3]   Sorption hysteresis of benzene in charcoal particles [J].
Braida, WJ ;
Pignatello, JJ ;
Lu, YF ;
Ravikovitch, PI ;
Neimark, AV ;
Xing, BS .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (02) :409-417
[4]   Nanotechnology: A little knowledge ... [J].
Brumfiel, G .
NATURE, 2003, 424 (6946) :246-248
[5]   Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations [J].
Bucheli, TD ;
Gustafsson, Ö .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (24) :5144-5151
[6]   Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: Role of polarity and accessibility [J].
Chen, BL ;
Johnson, EJ ;
Chefetz, B ;
Zhu, LZ ;
Xing, BS .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (16) :6138-6146
[7]   Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C60 [J].
Cheng, XK ;
Kan, AT ;
Tomson, MB .
JOURNAL OF NANOPARTICLE RESEARCH, 2005, 7 (4-5) :555-567
[8]   Naphthalene adsorption and desorption from Aqueous C60 fullerene [J].
Cheng, XK ;
Kan, AT ;
Tomson, MB .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2004, 49 (03) :675-683
[9]   The potential environmental impact of engineered nanomaterials [J].
Colvin, VL .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1166-1170
[10]   C60 in water:: Nanocrystal formation and microbial response [J].
Fortner, JD ;
Lyon, DY ;
Sayes, CM ;
Boyd, AM ;
Falkner, JC ;
Hotze, EM ;
Alemany, LB ;
Tao, YJ ;
Guo, W ;
Ausman, KD ;
Colvin, VL ;
Hughes, JB .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (11) :4307-4316