Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics

被引:869
作者
Wang, ML
Zhou, YB
Li, ZB
机构
[1] Department of Mathematics, Lanzhou University, Lanzhou
关键词
approximate equations for long water waves; coupled KdV equations; dispersive long wave equations in 2 + 1 dimensions; solitary wave solutions; homogeneous balance method;
D O I
10.1016/0375-9601(96)00283-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The solitary wave solutions of the approximate equations for long water waves, the coupled KdV equations and the dispersive long wave equations in 2 + 1 dimensions are constructed by using a homogeneous balance method.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 13 条
[1]   SPECTRAL TRANSFORM FOR A 2-SPATIAL DIMENSION EXTENSION OF THE DISPERSIVE LONG-WAVE EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (03) :371-387
[2]   APPROXIMATE EQUATIONS FOR LONG WATER WAVES [J].
BROER, LJF .
APPLIED SCIENTIFIC RESEARCH, 1975, 31 (05) :377-395
[3]   ON THE INTEGRABILITY OF A SYSTEM OF COUPLED KDV EQUATIONS [J].
DODD, R ;
FORDY, A .
PHYSICS LETTERS A, 1982, 89 (04) :168-170
[4]   SOLITON-SOLUTIONS OF A COUPLED KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R ;
SATSUMA, J .
PHYSICS LETTERS A, 1981, 85 (8-9) :407-408
[5]   MATHEMATICS OF DISPERSIVE WATER-WAVES [J].
KUPERSHMIDT, BA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (01) :51-73
[6]   PAINLEVE TEST FOR THE INTEGRABLE DISPERSIVE LONG-WAVE EQUATIONS IN 2 SPACE DIMENSIONS [J].
LOU, S .
PHYSICS LETTERS A, 1993, 176 (1-2) :96-100
[7]   N-SOLITON SOLUTIONS OF A SYSTEM OF COUPLED KDV EQUATIONS [J].
LU, BQ .
PHYSICS LETTERS A, 1994, 189 (1-2) :25-26
[8]   ON THE INTEGRABILITY OF THE HIROTA-SATSUMA SYSTEM [J].
OEVEL, W .
PHYSICS LETTERS A, 1983, 94 (09) :404-407
[9]   GROUP THEORETICAL-ANALYSIS OF DISPERSIVE LONG-WAVE EQUATIONS IN 2 SPACE DIMENSIONS [J].
PAQUIN, G ;
WINTERNITZ, P .
PHYSICA D, 1990, 46 (01) :122-138