Metabolic responses to the reduction in palmitate caused by disruption of the FATB gene in Arabidopsis

被引:49
作者
Bonaventure, G [1 ]
Ba, XM [1 ]
Ohlrogge, J [1 ]
Pollard, M [1 ]
机构
[1] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
关键词
D O I
10.1104/pp.104.043372
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Disruption of the FATB gene in Arabidopsis results in a two-thirds reduction in saturated fatty acids, largely palmitate, in the leaf extra-plastidic phospholipids and a reduction in the growth rate of the mutant compared to wild type (Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB [2003] Plant Cell 15: 1020-1033). In this study, we report that although fatb-ko seedlings grow more slowly than wild type, the rate of fatty acid synthesis in leaves of the mutant increases by 40%. This results in approximately the same amount of palmitate exported from the plastid as in wild type but an increase in oleate export of about 55%. To maintain constant amounts of fatty acids in leaves, thereby counterbalancing their higher rate of production, the mutant also increases its rate of fatty acid degradation. Although fatb-ko leaves have higher rates of fatty acid synthesis and turnover, the relative proportions of membrane lipids are similar to wild type. Thus, homeostatic mechanisms to preserve membrane compositions compensate for substantial changes in rates of fatty acid and glycerolipid metabolism in the mutant. Pulse-chase labeling studies show that in fatb-ko leaves there is a net increase in the synthesis of both prokaryotic and eukaryotic lipids and consequently of their turnover. The net loss of palmitate from phosphatidylcholine plus phosphatidyl-ethanolamine is similar for wild type and mutant, suggesting that mechanisms are not present that can preferentially preserve the saturated fatty acids. In summary, the leaf cell responds to the loss of saturated fatty acid production in the fatb-ko mutant by increasing both fatty acid synthesis and degradation, but in doing so the mechanisms for increased fatty acid turnover contribute to the lowering of the percentage of saturated fatty acids found in eukaryotic lipids.
引用
收藏
页码:1269 / 1279
页数:11
相关论文
共 41 条
[21]   A MUTANT OF ARABIDOPSIS WITH INCREASED LEVELS OF STEARIC-ACID [J].
LIGHTNER, J ;
WU, JR ;
BROWSE, J .
PLANT PHYSIOLOGY, 1994, 106 (04) :1443-1451
[22]  
Lynch Daniel V., 1993, P285
[23]   Toward a functional catalog of the plant genome.: A survey of genes for lipid biosynthesis [J].
Mekhedov, S ;
de Ilárduya, OM ;
Ohlrogge, J .
PLANT PHYSIOLOGY, 2000, 122 (02) :389-401
[24]   Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology [J].
Mou, ZL ;
He, YK ;
Dai, Y ;
Liu, XF ;
Li, JY .
PLANT CELL, 2000, 12 (03) :405-417
[25]   Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase [J].
Nandi, A ;
Krothapalli, K ;
Buseman, CM ;
Li, MY ;
Welti, R ;
Enyedi, A ;
Shah, J .
PLANT CELL, 2003, 15 (10) :2383-2398
[26]   REGULATION OF FATTY-ACID SYNTHESIS DURING CESSATION OF PHOSPHOLIPID BIOSYNTHESIS IN ESCHERICHIA-COLI [J].
NUNN, WD ;
KELLY, DL ;
STUMFALL, MY .
JOURNAL OF BACTERIOLOGY, 1977, 132 (02) :526-531
[27]   SUBCELLULAR-LOCALIZATION OF ACYL CARRIER PROTEIN IN LEAF PROTOPLASTS OF SPINACIA-OLERACEA [J].
OHLROGGE, JB ;
KUHN, DN ;
STUMPF, PK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (03) :1194-1198
[28]   Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling [J].
Pollard, M ;
Ohlrogge, J .
PLANT PHYSIOLOGY, 1999, 121 (04) :1217-1226
[29]  
POSTBEITTENMILLER D, 1991, J BIOL CHEM, V266, P1858
[30]   Biochemistry and molecular biology of wax production in plants [J].
PostBeittenmiller, D .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :405-430