Folding and misfolding mechanisms of the p53 DNA binding domain at physiological temperature

被引:30
作者
Butler, James S. [1 ]
Loh, Stewart N. [1 ]
机构
[1] SUNY Syracuse, Upstate Med Univ, Dept Biochem & Mol Biol, Syracuse, NY 13210 USA
关键词
cancer; mutation; aggregation; folding kinetics;
D O I
10.1110/ps.062324206
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
p53 modulates a large number of cellular response pathways and is critical for the prevention of cancer. Wild-type p53, as well as tumorigenic mutants, exhibits the singular property of spontaneously losing DNA binding activity at 37 degrees C. To understand the molecular basis for this effect, we examine the folding mechanism of the p53 DNA binding domain (DBD) at elevated temperatures. Folding kinetics do not change appreciably from 5 degrees C to 35 degrees C. DBD therefore folds by the same two-channel mechanism at physiological temperature as it does at 10 degrees C. Unfolding rates, however, accelerate by 10,000-fold. Elevated temperatures thus dramatically increase the frequency of cycling between folded and unfolded states. The results suggest that function is lost because a fraction of molecules become trapped in misfolded conformations with each folding-unfolding cycle. In addition, at 37 degrees C, the equilibrium stabilities of the off-pathway species are predicted to rival that of the native state, particularly in the case of destabilized mutants. We propose that it is the presence of these misfolded species, which can aggregate in vitro and may be degraded in the cell, that leads to p53 inactivation.
引用
收藏
页码:2457 / 2465
页数:9
相关论文
共 34 条
[1]   KINETIC-ANALYSIS OF FOLDING AND UNFOLDING THE 56-AMINO ACID IGG-BINDING DOMAIN OF STREPTOCOCCAL PROTEIN-G [J].
ALEXANDER, P ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (32) :7243-7248
[2]  
BARTEK J, 1991, ONCOGENE, V6, P1699
[3]   p53 contains large unstructured regions in its native state [J].
Bell, S ;
Klein, C ;
Müller, L ;
Hansen, S ;
Buchner, J .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 322 (05) :917-927
[4]   Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy [J].
Bullock, AN ;
Henckel, J ;
Fersht, AR .
ONCOGENE, 2000, 19 (10) :1245-1256
[5]   Thermodynamic stability of wild-type and mutant p53 core domain [J].
Bullock, AN ;
Henckel, J ;
DeDecker, BS ;
Johnson, CM ;
Nikolova, PV ;
Proctor, MR ;
Lane, DP ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14338-14342
[6]   Kinetic partitioning during folding of the p53 DNA binding domain [J].
Butler, JS ;
Loh, SN .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 350 (05) :906-918
[7]   Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain [J].
Butler, JS ;
Loh, SN .
BIOCHEMISTRY, 2003, 42 (08) :2396-2403
[8]   LOW-TEMPERATURE UNFOLDING OF A MUTANT OF PHAGE-T4 LYSOZYME .2. KINETIC INVESTIGATIONS [J].
CHEN, BL ;
BAASE, WA ;
SCHELLMAN, JA .
BIOCHEMISTRY, 1989, 28 (02) :691-699
[9]   CP-31398 restores DNA-binding activity to mutant p53 in vitro but does not affect p53 homologs p63 and p73 [J].
Demma, MJ ;
Wong, S ;
Maxwell, E ;
Dasmahapatra, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :45887-45896
[10]   Pharmacological rescue of mutant p53 conformation and function [J].
Foster, BA ;
Coffey, HA ;
Morin, MJ ;
Rastinejad, F .
SCIENCE, 1999, 286 (5449) :2507-2510