Signaling events in amyloid β-peptide-induced neuronal death and insulin-like growth factor I protection

被引:169
作者
Wei, WL [1 ]
Wang, XT [1 ]
Kusiak, JW [1 ]
机构
[1] NIA, Mol Neurobiol Unit, Cellular & Mol Biol Lab, Intramural Res Program,Gerontol Res Ctr,NIH, Baltimore, MD 21224 USA
关键词
D O I
10.1074/jbc.M111704200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amyloid beta-peptide (Abeta) is implicated as the toxic agent in Alzheimer's disease and is the major component of brain amyloid plaques. In vitro, Abeta causes cell death, but the molecular mechanisms are unclear. We analyzed the early signaling mechanisms involved in Abeta toxicity using the SH-SY5Y neuroblastoma cell line. Abeta caused cell death and induced a 2- to 3-fold activation of JNK JNK activation and cell death were inhibited by overexpression of a dominant-negative SEK1 (SEK1-AL) construct. Butyrolactone I, a cdk5 inhibitor, had an additional protective effect against Abeta toxicity in these SEK1-AL-expressing cells suggesting that cdk5 and JNK activation independently contributed to this toxicity. Abeta also weakly activated ERK and Akt but had no effect on p38 kinase. Inhibitors of ERK and phosphoinositide 3-kinase (PI3K) pathways did not affect Abeta-induced cell death, suggesting that these pathways were not important in Abeta toxicity. Insulin-like growth factor I protected against Abeta toxicity by strongly activating ERK and Akt and blocking JNK activation in a PI3K-dependent manner. Pertussis toxin also blocked Abeta-induced cell death and JNK activation suggesting that G(i/o) proteins were upstream activators of JNK. The results suggest that activation of the JNK pathway and cdk5 may be initial signaling cascades in Abeta-induced cell death.
引用
收藏
页码:17649 / 17656
页数:8
相关论文
共 70 条
[1]   Amyloid β neurotoxicity not mediated by the mitogen-activated protein kinase cascade in cultured rat hippocampal and cortical neurons [J].
Abe, K ;
Saito, H .
NEUROSCIENCE LETTERS, 2000, 292 (01) :1-4
[2]   Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase [J].
Ahmed, NN ;
Grimes, HL ;
Bellacosa, A ;
Chan, TO ;
Tsichlis, PN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3627-3632
[3]   Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism [J].
Akama, KT ;
Albanese, C ;
Pestell, RG ;
Van Eldik, LJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (10) :5795-5800
[4]   A cdk5-p35 stable complex is involved in the β-amyloid-induced deregulation of cdk5 activity in hippocampal neurons [J].
Alvarez, A ;
Muñoz, JP ;
Maccioni, RB .
EXPERIMENTAL CELL RESEARCH, 2001, 264 (02) :266-274
[5]   DNA damage and apoptosis in Alzheimer's disease: Colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay [J].
Anderson, AJ ;
Su, JH ;
Cotman, CW .
JOURNAL OF NEUROSCIENCE, 1996, 16 (05) :1710-1719
[6]  
ANDERSON AJ, 1995, J NEUROCHEM, V65, P1487
[7]   AMYLOID-BETA PEPTIDE INDUCES NECROSIS RATHER THAN APOPTOSIS [J].
BEHL, C ;
DAVIS, JB ;
KLIER, FG ;
SCHUBERT, D .
BRAIN RESEARCH, 1994, 645 (1-2) :253-264
[8]   IONIC CHANNELS AND THEIR REGULATION BY G-PROTEIN SUBUNITS [J].
BROWN, AM ;
BIRNBAUMER, L .
ANNUAL REVIEW OF PHYSIOLOGY, 1990, 52 :197-213
[9]   PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION [J].
BURGERING, BMT ;
COFFER, PJ .
NATURE, 1995, 376 (6541) :599-602
[10]   Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor-I [J].
Cheng, HL ;
Feldman, EL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (23) :14560-14565