Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle

被引:81
作者
Sakamoto, K
Arnolds, DEW
Ekberg, I
Thorell, A
Goodyear, LJ
机构
[1] Brigham & Womens Hosp, Div Res, Joslin Diabet Ctr, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Dept Med, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
[4] Ersta Hosp, Karolinska Inst, Surg Sci Ctr, Stockholm, Sweden
关键词
signaling; protein kinase glycogen synthase; contraction; adaptation; exercise; Akt glycogen synthase kinase-3; human; skeletal muscle;
D O I
10.1016/j.bbrc.2004.05.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Activation of Akt and deactivation of GSK3 are critical signals regulating a number of cellular processes in multiple systems. Whether physical exercise alters Akt and GSK3 activity in human skeletal muscle is controversial. beta-Catenin, a GSK3 substrate and important Wnt signaling protein that alters gene transcription, has not been investigated in human skeletal muscle. In the present study, eight healthy human subjects performed 30 min of cycling exercise at 75% of maximum workload (submaximal) followed by 6 bouts of 60 s at 125% maximum workload (maximal). Biopsies of vastus lateralis muscle were taken at rest (basal), and within 15 s following cessation of the submaximal and maximal exercise bouts. Exercise at both submaximal and maximal intensities significantly increased Akt activity (40% and 110%, respectively). Increases in Akt activity were accompanied by increases in Akt Thr(308) and Ser(473) phosphorylation, decreased GSK3alpha activity (similar to30% at both intensities), and increased phosphorylation of GSK3alpha Ser(21), Exercise at both intensities also decreased beta-catenin Ser(33/37) Thr(41) phosphorylation (50-60% at both intensities). These results demonstrate that Akt, GSK3, and beta-catenin signaling are regulated by exercise in human skeletal muscle, and as such identify them as possible molecular mediators of exercise's effect on metabolic and transcriptional processes in skeletal muscle. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:419 / 425
页数:7
相关论文
共 36 条
[1]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[2]  
Aschenbach W, 2003, DIABETES, V52, pA12
[3]   Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B [J].
Bae, SS ;
Cho, H ;
Mu, J ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (49) :49530-49536
[4]   Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ) [J].
Cho, H ;
Mu, J ;
Kim, JK ;
Thorvaldsen, JL ;
Chu, QW ;
Crenshaw, EB ;
Kaestner, KH ;
Bartolomei, MS ;
Shulman, GI ;
Birnbaum, MJ .
SCIENCE, 2001, 292 (5522) :1728-1731
[5]  
Coffer PJ, 1998, BIOCHEM J, V335, P1
[6]   The renaissance of GSK3 [J].
Cohen, P ;
Frame, S .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (10) :769-776
[7]  
Cross D, 2000, METH MOL B, V124, P147
[8]   Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling [J].
Ding, VW ;
Chen, RH ;
McCormick, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32475-32481
[9]   GSK3 takes centre stage more than 20 years after its discovery [J].
Frame, S ;
Cohen, P .
BIOCHEMICAL JOURNAL, 2001, 359 (01) :1-16
[10]   Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle [J].
Fujii, N ;
Hayashi, T ;
Hirshman, MF ;
Smith, JT ;
Habinowski, SA ;
Kaijser, L ;
Mu, J ;
Ljungqvist, O ;
Birnbaum, MJ ;
Witters, LA ;
Thorell, A ;
Goodyear, LJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 273 (03) :1150-1155