Mining association rules in folksonornies

被引:66
作者
Schmitz, Christoph [1 ]
Hotho, Andreas [1 ]
Jaeschke, Robert [1 ,2 ]
Stumme, Gerd [1 ,2 ]
机构
[1] Univ Kassel, Dept Math & Comp Sci, Knowledge & Data Engn Grp, Wilhelmshher Allee 73, D-34121 Kassel, Germany
[2] Res Ctr L3S, D-30539 Hannover, Germany
来源
DATA SCIENCE AND CLASSIFICATION | 2006年
关键词
D O I
10.1007/3-540-34416-0_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social bookmark tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures called folksonomies. These systems provide currently relatively few structure. We discuss in this paper, how association rule mining can be adopted to analyze and structure folksonomies, and how the results can be used for ontology learning and supporting emergent semantics. We demonstrate our approach on a large scale dataset stemming from an online system.
引用
收藏
页码:261 / +
页数:3
相关论文
共 16 条
[1]  
Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
[2]  
Ganter B., 1999, Formal Concept Analysis: Mathematical Foundations
[3]  
HAMMOND T, 2005, D LIB MAGAZINE, V11
[4]  
HANNAY T, 2005, D LIB MAGAZINE, V11
[5]  
HOTHO A, 2006, UNPUB ESWC 2006
[6]  
LEHMANN F, 1995, LECT NOTES COMPUTER, V954
[7]  
Mathes A., 2004, Folksonomies - cooperative classification and communication through shared metadata
[8]  
Mika P, 2005, LECT NOTES COMPUT SC, V3729, P522, DOI 10.1007/11574620_38
[9]  
PASQUIER N, 1999, 15 J BAS DONN AV BDA, P361
[10]   Emergent semantics [J].
Staab, S .
IEEE INTELLIGENT SYSTEMS, 2002, 17 (01) :78-81