The frequency structure of one-dimensional occluding image signals

被引:28
作者
Beauchemin, SS
Barron, JL
机构
[1] Univ Penn, GRASP Lab, Philadelphia, PA 19104 USA
[2] Univ Western Ontario, Dept Comp Sci, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
occlusion; Fourier transforms; optical flow; non-Fourier motion;
D O I
10.1109/34.825758
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a theoretical investigation of the frequency structure of 1D occluding image signals. We show that image signal occlusion contains relevant information which is most easily extractable from its representation in the frequency domain. For instance, the occluding and occluded signal velocities may be identified as such and translucency phenomena may be understood in the terms of this theoretical investigation. in addition, it is found that the structure of occluding 1D signals is invariant under constant and linear models of signal velocity. This theoretical framework can be used to describe the exact frequency structure of non-Fourier motion and bridges the gap between such visual phenomena and their understanding in the frequency domain.
引用
收藏
页码:200 / 206
页数:7
相关论文
共 12 条
[2]  
[Anonymous], 1992, THEORY
[3]   DRIFT-BALANCED RANDOM STIMULI - A GENERAL BASIS FOR STUDYING NON-FOURIER MOTION PERCEPTION [J].
CHUBB, C ;
SPERLING, G .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1988, 5 (11) :1986-2007
[4]   COMPUTATION OF COMPONENT IMAGE VELOCITY FROM LOCAL PHASE INFORMATION [J].
FLEET, DJ ;
JEPSON, AD .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1990, 5 (01) :77-104
[5]   COMPUTATIONAL ANALYSIS OF NON-FOURIER MOTION [J].
FLEET, DJ ;
LANGLEY, K .
VISION RESEARCH, 1994, 34 (22) :3057-3079
[6]  
Gaskill J.D., 1978, Linear Systems, Fourier Transforms, and Optics
[7]  
Jepson A., 1993, Proceedings. 1993 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.93CH3309-2), P760, DOI 10.1109/CVPR.1993.341161
[8]   ON THE ESTIMATION OF OPTICAL-FLOW - RELATIONS BETWEEN DIFFERENT APPROACHES AND SOME NEW RESULTS [J].
NAGEL, HH .
ARTIFICIAL INTELLIGENCE, 1987, 33 (03) :299-324
[9]   DISPLACEMENT VECTORS DERIVED FROM 2ND-ORDER INTENSITY VARIATIONS IN IMAGE SEQUENCES [J].
NAGEL, HH .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1983, 21 (01) :85-117
[10]  
NAGEL HH, 1983, P INT JOINT C ART IN, P945