GeV electron beams from a centimetre-scale accelerator

被引:1559
作者
Leemans, W. P.
Nagler, B.
Gonsalves, A. J.
Toth, Cs.
Nakamura, K.
Geddes, C. G. R.
Esarey, E.
Schroeder, C. B.
Hooker, S. M.
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[3] Univ Tokyo, Nucl Profess Sch, Naka, Ibaraki 3191188, Japan
[4] Univ Nevada, Dept Phys, Reno, NV 89557 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/nphys418
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gigaelectron volt (GeV) electron accelerators are essential to synchrotron radiation facilities and free-electron lasers, and as modules for high-energy particle physics. Radiofrequency-based accelerators are limited to relatively low accelerating fields (10- 50 MV m(-1)), requiring tens to hundreds of metres to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometres to generate particle energies of interest to high-energy physics. Laser-wakefield accelerators(1,2) produce electric fields of the order 10 - 100 GV m(-1) enabling compact devices. Previously, the required laser intensity was not maintained over the distance needed to reach GeV energies, and hence acceleration was limited to the 100 MeV scale(3-5). Contrary to predictions that petawatt-class lasers would be needed to reach GeV energies(6,7), here we demonstrate production of a high-quality electron beam with 1 GeV energy by channelling a 40 TW peak-power laser pulse in a 3.3-cm-long gas-filled capillary discharge waveguide(8,9).
引用
收藏
页码:696 / 699
页数:4
相关论文
共 28 条
[1]   Simulations of a hydrogen-filled capillary discharge waveguide [J].
Bobrova, NA ;
Esaulov, AA ;
Sakai, JI ;
Sasorov, PV ;
Spence, DJ ;
Butler, A ;
Hooker, SM ;
Bulanov, SV .
PHYSICAL REVIEW E, 2002, 65 (01) :1-016407
[2]   Nonlocal-thermal-equilibrium model of a pulsed capillary discharge waveguide [J].
Broks, BHP ;
Garloff, K ;
van der Mullen, JJAM .
PHYSICAL REVIEW E, 2005, 71 (01)
[3]   Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide [J].
Butler, A ;
Spence, DJ ;
Hooker, SM .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :1-185003
[4]   Femtosecond x-rays from Thomson scattering using laser wakefield accelerators [J].
Catravas, P ;
Esarey, E ;
Leemans, WP .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2001, 12 (11) :1828-1834
[5]   Hose instability and wake generation by an intense electron beam in a self-ionized gas [J].
Deng, S ;
Barnes, CD ;
Clayton, CE ;
O'Connell, C ;
Decker, FJ ;
Fonseca, RA ;
Huang, C ;
Hogan, MJ ;
Iverson, R ;
Johnson, DK ;
Joshi, C ;
Katsouleas, T ;
Krejcik, P ;
Lu, W ;
Mori, WB ;
Muggli, P ;
Oz, E ;
Tsung, F ;
Walz, D ;
Zhou, M .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[6]   LIGHT PIPE FOR HIGH-INTENSITY LASER-PULSES [J].
DURFEE, CG ;
MILCHBERG, HM .
PHYSICAL REVIEW LETTERS, 1993, 71 (15) :2409-2412
[7]   Electron injection into plasma wake fields by colliding laser pulses [J].
Esarey, E ;
Hubbard, RF ;
Leemans, WP ;
Ting, A ;
Sprangle, P .
PHYSICAL REVIEW LETTERS, 1997, 79 (14) :2682-2685
[8]   Overview of plasma-based accelerator concepts [J].
Esarey, E ;
Sprangle, P ;
Krall, J ;
Ting, A .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1996, 24 (02) :252-288
[9]   A laser-plasma accelerator producing monoenergetic electron beams [J].
Faure, J ;
Glinec, Y ;
Pukhov, A ;
Kiselev, S ;
Gordienko, S ;
Lefebvre, E ;
Rousseau, JP ;
Burgy, F ;
Malka, V .
NATURE, 2004, 431 (7008) :541-544
[10]   Guiding of relativistic laser pulses by preformed plasma channels [J].
Geddes, CGR ;
Toth, C ;
van Tilborg, J ;
Esarey, E ;
Schroeder, CB ;
Cary, J ;
Leemans, WP .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)