A simple microindentation technique for mapping the microscale compliance of soft hydrated materials and tissues

被引:60
作者
Jacot, Jeffrey G. [1 ]
Dianis, Scott [1 ]
Schnall, Joshua [1 ]
Wong, Joyce Y. [1 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
关键词
microindentation; polyacrylamide; greater saphenous vein; compressive modulus; tensile modulus; elastic gradient;
D O I
10.1002/jbm.a.30812
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Several recent studies have shown that cells respond to the elastic modulus and elasticity gradients on soft substrates. However, traditional macroscale methods for measuring elastic modulus cannot resolve elastic gradients or differences between the macroscale and microscale elastic modulus of layered tissues. Here, we present a technique for measurement of the microscale elastic modulus of soft, hydrated gels and tissues. This technique requires less equipment than equivalent atomic force microscopy (AFM) and can easily measure larger samples with high adhesiveness. We validate this technique by measuring the microscale modulus of a hydrogel with elasticity that does not depend on measurement scale. We show that the elastic modulus measured using microindentation correlates with measurements using AFM and the macroscale tensile modulus. We verified the ability of this technique to characterize a hydrogel with an elastic gradient of 2.2 kPa/mm across 19 mm and to measure the microscale elastic modulus of the endothelial side of human greater saphenous vein, which is an order of magnitude less than the whole vein macroscale modulus. This simple, inexpensive system allows the measurement of the spatial organization of microscale elastic properties of fully hydrated, soft gels and tissues as a routine laboratory technique. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:485 / 494
页数:10
相关论文
共 39 条
[1]  
Abe H, 1996, DATA BOOK MECH PROPE
[2]   Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts [J].
Beningo, KA ;
Dembo, M ;
Kaverina, I ;
Small, JV ;
Wang, YL .
JOURNAL OF CELL BIOLOGY, 2001, 153 (04) :881-887
[3]   Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response [J].
Brown, XQ ;
Ookawa, K ;
Wong, JY .
BIOMATERIALS, 2005, 26 (16) :3123-3129
[4]   The ideal small arterial substitute: a search for the Holy Grail? [J].
Conte, MS .
FASEB JOURNAL, 1998, 12 (01) :43-45
[5]   CELL POKING - DETERMINATION OF THE ELASTIC AREA COMPRESSIBILITY MODULUS OF THE ERYTHROCYTE-MEMBRANE [J].
DAILY, B ;
ELSON, EL ;
ZAHALAK, GI .
BIOPHYSICAL JOURNAL, 1984, 45 (04) :671-682
[6]   In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton [J].
Deroanne, CF ;
Lapiere, CM ;
Nusgens, BV .
CARDIOVASCULAR RESEARCH, 2001, 49 (03) :647-658
[7]   Determination of elastic moduli of thin layers of soft material using the atomic force microscope [J].
Dimitriadis, EK ;
Horkay, F ;
Maresca, J ;
Kachar, B ;
Chadwick, RS .
BIOPHYSICAL JOURNAL, 2002, 82 (05) :2798-2810
[8]   Nanoindentation of soft hydrated materials for application to vascular tissues [J].
Ebenstein, DM ;
Pruitt, LA .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2004, 69A (02) :222-232
[9]   Substrate compliance versus ligand density in cell on gel responses [J].
Engler, A ;
Bacakova, L ;
Newman, C ;
Hategan, A ;
Griffin, M ;
Discher, D .
BIOPHYSICAL JOURNAL, 2004, 86 (01) :617-628
[10]   Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: Correlations between substrate stiffness and cell adhesion [J].
Engler, AJ ;
Richert, L ;
Wong, JY ;
Picart, C ;
Discher, DE .
SURFACE SCIENCE, 2004, 570 (1-2) :142-154