Alekseevskian spaces

被引:44
作者
Cortes, V [1 ]
机构
[1] UNIV BONN,INST MATH,D-53115 BONN,GERMANY
关键词
homogeneous quaternionic Kahler manifolds;
D O I
10.1016/0926-2245(96)89146-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
D.V. Alekseevsky's classification of quaternionic Kahlerian solvmanifolds (1975) is completed, confirming results which were obtained recently by the theoretical physicists B. de Wit and A. Van Proeyen in the context of supergravity. It is further shown that an Alekseevsky space is symmetric if and only if its sectional curvature is non-positive. This is an analogue of a well known theorem due to J.E. D'Atri and I. Dotti Miatello, which characterizes bounded symmetric domains by non-positive curvature.
引用
收藏
页码:129 / 168
页数:40
相关论文
共 24 条
[1]  
Alekseevskii D., 1976, MATH USSR SB, V25, P87, DOI 10.1070/SM1975v025n01ABEH002200
[2]  
ALEKSEEVSKII D. V., 1968, FUNCT ANAL APPL, V2, P97, DOI 10.1007/BF01075943
[3]  
ALEKSEEVSKII DV, 1971, MAT SBORNIK, V13, P12
[4]  
Alekseevskii DV., 1975, Izv. Akad. Nauk SSSR Ser. Mat, V39, P297
[5]  
[Anonymous], 1971, ALGEBRA
[6]  
Atiyah M., 1964, TOPOLOGY S1, V3, P3, DOI 10.1016/0040-9383(64)90003-5
[7]  
Besse A L., 1987, EINSTEIN MANIFOLDS
[8]   ON EXTENSIONS OF LIE ALGEBRAS [J].
BLOCK, RE .
CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (06) :1439-&
[9]   HOMOGENEOUS KAHLER-MANIFOLDS AND T-ALGEBRAS IN N = 2 SUPERGRAVITY AND SUPERSTRINGS [J].
CECOTTI, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (01) :23-55
[10]   A CHARACTERIZATION OF BOUNDED SYMMETRIC DOMAINS BY CURVATURE [J].
DATRI, JE ;
MIATELLO, ID .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 276 (02) :531-540