AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage

被引:116
作者
Cheng, Ning-Hui
Liu, Jian-Zhong
Brock, Amanda
Nelsono, Richard S.
Hirschi, Kendal D.
机构
[1] USDA ARS, Plant Physiol Grp, Childrens Nutr Res Ctr, Dept Pediat,Baylor Coll Med, Houston, TX 77030 USA
[2] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73402 USA
[3] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[4] Texas A&M Univ, Vegetable & Fruit Improvement Ctr, College Stn, TX 77845 USA
关键词
D O I
10.1074/jbc.M601354200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glutaredoxins (Grxs) are ubiquitous small heat-stable disulfide oxidoreductases and members of the thioredoxin (Trx) fold protein family. In bacterial, yeast, and mammalian cells, Grxs appear to be involved in maintaining cellular redox homeostasis. However, in plants, the physiological roles of Grxs have not been fully characterized. Recently, an emerging subgroup of Grxs with one cysteine residue in the putative active motif (monothiol Grxs) has been identified but not well characterized. Here we demonstrate that a plant protein, AtGRXcp, is a chloroplast-localized monothiol Grx with high similarity to yeast Grx5. In yeast expression assays, AtGRXcp localized to the mitochondria and suppressed the sensitivity of yeast grx5 cells to H2O2 and protein oxidation. AtGRXcp expression can also suppress iron accumulation and partially rescue the lysine auxotrophy of yeast grx5 cells. Analysis of the conserved monothiol motif suggests that the cysteine residue affects AtGRXcp expression and stability. In planta, AtGRXcp expression was elevated in young cotyledons, green tissues, and vascular bundles. Analysis of atgrxcp plants demonstrated defects in early seedling growth under oxidative stresses. In addition, atgrxcp lines displayed increased protein carbonylation within chloroplasts. Thus, this work describes the initial functional characterization of a plant monothiol Grx and suggests a conserved biological function in protecting cells against protein oxidative damage.
引用
收藏
页码:26280 / 26288
页数:9
相关论文
共 57 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[3]  
AUSUBEL F, 1996, CURRENT PROTOCOLS MO, V2, P5
[4]   Biogenesis of iron-sulfur proteins in plants [J].
Balk, J ;
Lobréaux, S .
TRENDS IN PLANT SCIENCE, 2005, 10 (07) :324-331
[5]   Synaptic multiprotein complexes associated with 5-HT2C receptors:: a proteomic approach [J].
Bécamel, C ;
Alonso, G ;
Geléotti, N ;
Demey, E ;
Jouin, P ;
Ullmer, C ;
Dumuis, A ;
Bockaert, J ;
Marin, P .
EMBO JOURNAL, 2002, 21 (10) :2332-2342
[6]   Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein [J].
Bellí, G ;
Polaina, J ;
Tamarit, J ;
de la Torre, MA ;
Rodríguez-Manzaneque, MT ;
Ros, J ;
Herrero, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (40) :37590-37596
[7]   Redox regulation: A broadening horizon [J].
Buchanan, BB ;
Balmer, Y .
ANNUAL REVIEW OF PLANT BIOLOGY, 2005, 56 :187-220
[8]   The ferredoxin/thioredoxin system:: from discovery to molecular structures and beyond [J].
Buchanan, BB ;
Schürmann, P ;
Wolosiuk, RA ;
Jacquot, JP .
PHOTOSYNTHESIS RESEARCH, 2002, 73 (1-3) :215-222
[9]   STRUCTURAL AND FUNCTIONAL-CHARACTERIZATION OF THE MUTANT ESCHERICHIA-COLI GLUTAREDOXIN(C14-]S) AND ITS MIXED DISULFIDE WITH GLUTATHIONE [J].
BUSHWELLER, JH ;
ASLUND, F ;
WUTHRICH, K ;
HOLMGREN, A .
BIOCHEMISTRY, 1992, 31 (38) :9288-9293
[10]   Characterization of CXIP4, a novel Arabidopsis protein that activates the H+/Ca2+ antiporter, CAX1 [J].
Cheng, NH ;
Liu, JZ ;
Nelson, RS ;
Hirschi, KD .
FEBS LETTERS, 2004, 559 (1-3) :99-106