Mechanical design and performance of composite multifunctional materials

被引:138
作者
Thomas, JP
Qidwai, MA
机构
[1] USN, Res Lab, Multifunct Mat Branch, Washington, DC 20375 USA
[2] Geocenters Inc, Washington Operat, Washington, MD 20749 USA
关键词
composites; modeling; mechanical properties; electrical properties; multifunctional;
D O I
10.1016/j.actamat.2004.01.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Combining, functions in a single material entity permits improvements in system performance not possible through independent subsystem optimizations. The design of composite multifunctional materials for optimal system performance involves selection of constituents, cross-section architecture, and interface connections. We describe a methodology for deriving indices that quantitatively relate system-level performance of discrete composite components to their constituent properties and geometry. These material-architecture indices provide a useful metric for ranking composite design configurations. The methodology is demonstrated by the analysis and ranking of several notional multifunctional structure-battery laminate designs. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2155 / 2164
页数:10
相关论文
共 13 条
[1]  
Allen D.H., 1985, INTRO AEROSPACE STRU
[2]  
Anderson JD., 2012, AIRCRAFT PERFORMANCE
[3]   CRITERIA FOR SELECTING THE COMPONENTS OF COMPOSITES [J].
ASHBY, MF .
ACTA METALLURGICA ET MATERIALIA, 1993, 41 (05) :1313-1335
[4]   OVERVIEW NO 92 - MATERIALS AND SHAPE [J].
ASHBY, MF .
ACTA METALLURGICA ET MATERIALIA, 1991, 39 (06) :1025-1039
[5]  
ASHBY MF, 1999, MAT SELECTION MECH
[6]  
Ehrlich G.M., 2002, HDB BATTERIES
[7]  
GOZDZ AS, 1998, Patent No. 5840087
[8]  
GOZDZ AS, 2000, P 198 M EL SOC PHOEN
[9]  
NIU MCY, 1992, COMPOSITE AIRFRAME S, P89
[10]  
Roark R.J., 1975, FORMULAS STRESS STRA, DOI DOI 10.1016/j.vaccine.2008.10.077