20S proteasomes and protein degradation "by default"

被引:154
作者
Asher, Gad [1 ]
Reuven, Nina [1 ]
Shaul, Yosef [1 ]
机构
[1] Weizmann Inst Sci, Dept Mol Genet, IL-76100 Rehovot, Israel
关键词
D O I
10.1002/bies.20447
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The degradation of the majority of cellular proteins is mediated by the proteasomes. Ubiquitin-dependent proteasomal protein degradation is executed by a number of enzymes that interact to modify the substrates prior to their engagement with the 26S proteasomes. Alternatively, certain proteins are inherently unstable and undergo "default" degradation by the 20S proteasomes. Puzzlingly, proteins are by large subjected to both degradation pathways. Proteins with unstructured regions have been found to be substrates of the 20S proteasomes in vitro and, therefore, unstructured regions may serve as signals for protein degradation "by default" in the cell. The literature is loaded with examples where engagement of a protein into larger complexes increases protein stability, possibly by escaping degradation "by default". Our model suggests that formation of protein complexes masks the unstructured regions, making them inaccessible to the 20S proteasomes. This model not only provides molecular explanations for a recent theoretical "cooperative stability" principle, but also provokes new predictions and explanations in the field of protein regulation and functionality.
引用
收藏
页码:844 / 849
页数:6
相关论文
共 38 条
[1]   Mechanism of direct degradation of IκBα by 20S proteasome [J].
Alvarez-Castelao, B ;
Castaño, JG .
FEBS LETTERS, 2005, 579 (21) :4797-4802
[2]   NQ01 stabilizes p53 through a distinct pathway [J].
Asher, G ;
Lotem, J ;
Kama, R ;
Sachs, L ;
Shaul, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :3099-3104
[3]   20S proteasomal degradation of ornithine decarboxylase is regulated by NQ01 [J].
Asher, G ;
Bercovich, Z ;
Tsvetkov, P ;
Shaul, Y ;
Kahana, C .
MOLECULAR CELL, 2005, 17 (05) :645-655
[4]   A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73 [J].
Asher, G ;
Tsvetkov, P ;
Kahana, C ;
Shaul, Y .
GENES & DEVELOPMENT, 2005, 19 (03) :316-321
[5]   Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase-1 [J].
Asher, G ;
Lotem, J ;
Cohen, B ;
Sachs, L ;
Shaul, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :1188-1193
[6]   p53 proteasomal degradation - Poly-ubiquitination is not the whole story [J].
Asher, G ;
Shaul, Y .
CELL CYCLE, 2005, 4 (08) :1015-1018
[7]  
Asher G, 2004, METHOD ENZYMOL, V382, P278
[8]   p53 hot-spot mutants are resistant to ubiquitin-independent degradation by increased binding to NAD(P)H:quinone oxidoreductase 1 [J].
Asher, G ;
Lotem, J ;
Tsvetkov, P ;
Reiss, V ;
Sachs, L ;
Shaul, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (25) :15065-15070
[9]   Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQ01 [J].
Asher, G ;
Lotem, J ;
Sachs, L ;
Kahana, C ;
Shaul, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :13125-13130
[10]  
Bendjennat M, 2003, CELL, V114, P599, DOI 10.1016/j.cell.2003.08.001