β-aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid

被引:154
作者
Siegrist, J [1 ]
Orober, M [1 ]
Buchenauer, H [1 ]
机构
[1] Univ Hohenheim, Inst Phytomed, D-70593 Stuttgart, Germany
关键词
beta-aminobutyric acid; BTH; hypersensitive response; reactive oxygen species; systemic acquired resistance; tobacco; tobacco mosaic virus;
D O I
10.1006/pmpp.1999.0255
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A number of chemical and biological agents are known as inducers of systemic acquired resistance (SAR) to tobacco mosaic virus (TMV) in tobacco plants. In the present study, a local spray application of the non-protein amino acid DL-beta-aminobutyric acid (BABA) was effective in enhancing resistance to TMV in tobacco plants containing the N gene. In contrast, the isomer alpha-aminobutyric acid (AABA) showed a much lower activity whereas gamma-aminobutyric acid (GABA) was completely inactive, indicating a strong isomer specificity of aminobutyric acid in triggering enhanced virus resistance. Rapid cell death was detected in tobacco leaf tissues after foliar application of BABA, subsequently resulting in the development of macroscopically visible, necrotic lesions. BABA-induced cell death was associated with the rapid generation of superoxide and hydrogen peroxide. As further consequences, the occurrence of lipid peroxidation in treated tissues, a local and systemic increase of salicylic acid (SA) levels and the expression of PR-la, a molecular marker of SAR in tobacco, could be observed: None of these responses was detectable after treatment with GABA. Enhancement of virus resistance by BABA was found to be strictly dependent on Sh-mediated signal transduction since it could not be detected in salicylate hydroxylase (nahG) expressing transgenic tobacco plants. These findings suggest that in tobacco, primary processes triggered by foliar application of BABA, resemble those initiated by microbes during a hypersensitive response (HR) that result in SAR activation. (C) 2000 Academic Press.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 59 条
[1]   Characterization of acquired resistance in lesion-mimic transgenic potato expressing bacterio-opsin [J].
Abad, MS ;
Hakimi, SM ;
Kaniewski, WK ;
Rommens, CMT ;
Shulaev, V ;
Lam, E ;
Shah, DM .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1997, 10 (05) :635-645
[2]   Systemic acquired resistance in tomato against Phytophthora infestans by pre-inoculation with tobacco necrosis virus [J].
Anfoka, G ;
Buchenauer, H .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1997, 50 (02) :85-101
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]  
CHAMSAI J, 1998, MITTEILUNGEN BIOL BU, V357, P152
[5]   3-AMINOBUTYRIC ACID INDUCES SYSTEMIC RESISTANCE AGAINST PERONOSPORE TABACINA [J].
COHEN, Y .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1994, 44 (04) :273-288
[6]   SYSTEMIC RESISTANCE OF POTATO PLANTS AGAINST PHYTOPHTHORA-INFESTANS INDUCED BY UNSATURATED FATTY-ACIDS [J].
COHEN, Y ;
GISI, U ;
MOSINGER, E .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1991, 38 (04) :255-263
[7]   BETA-AMINOBUTYRIC ACID INDUCES THE ACCUMULATION OF PATHOGENESIS-RELATED PROTEINS IN TOMATO (LYCOPERSICON-ESCULENTUM L.) PLANTS AND RESISTANCE TO LATE BLIGHT INFECTION CAUSED BY PHYTOPHTHORA-INFESTANS [J].
COHEN, Y ;
NIDERMAN, T ;
MOSINGER, E ;
FLUHR, R .
PLANT PHYSIOLOGY, 1994, 104 (01) :59-66
[8]   SYSTEMIC TRANSLOCATION OF C-14 DL-3-AMINOBUTYRIC ACID IN TOMATO PLANTS IN RELATION TO INDUCED RESISTANCE AGAINST PHYTOPHTHORA-INFESTANS [J].
COHEN, Y ;
GISI, U .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1994, 45 (06) :441-456
[9]   Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopara viticola in grapevines [J].
Cohen, Y ;
Reuveni, M ;
Baider, A .
EUROPEAN JOURNAL OF PLANT PATHOLOGY, 1999, 105 (04) :351-361
[10]   Protein dephosphorylation mediates salicylic acid-induced expression of PR-1 genes in tobacco [J].
Conrath, U ;
Silva, H ;
Klessig, DF .
PLANT JOURNAL, 1997, 11 (04) :747-757