Water flooding and two-phase flow in cathode channels of proton exchange membrane fuel cells

被引:152
作者
Liu, Xuan
Guo, Hang
Ma, Chongfang
机构
[1] Beijing Univ Technol, Coll Environm & Energy Engn, Minist Educ China, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing 100022, Peoples R China
[2] Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Municipal Key Lab Heat Transfer & Energy, Beijing 100022, Peoples R China
基金
中国国家自然科学基金;
关键词
proton exchange membrane fuel cell; visualization; flow field; two-phase flow; flooding;
D O I
10.1016/j.jpowsour.2005.06.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The water flooding and two-phase flow of reactants and products in cathode flow channels (0.8 mm in width, 1.0 mm in depth) were studied by means of transparent proton exchange membrane fuel cells. Three transparent proton exchange membrane fuel cells with different flow fields including parallel flow field, interdigitated flow field and cascade flow field were used. The effects of flow field, cell temperature, cathode gas flow rate and operation time on water build-up and cell performance were studied, respectively. Experimental results indicate that the liquid water columns accumulating in the cathode flow channels can reduce the effective electrochemical reaction area; it makes mass transfer limitation resulting in the cell performance loss. The water in flow channels at high temperature is much less than that at low temperature. When the water flooding appears, increasing cathode flow rate can remove excess water and lead to good cell performance. The water and gas transfer can be enhanced and the water removal is easier in the interdigitated channels and cascade channels than in the parallel channels. The cell performances of the fuel cells that installed interdigitated flow field or cascade flow field are better than that installed with parallel flow field. The images of liquid water in the cathode channels at different operating time were recorded. The evolution of liquid water removing out of channels was also recorded by high-speed video. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:267 / 280
页数:14
相关论文
共 29 条
[1]   Technical cost analysis for PEM fuel cells [J].
Bar-On, I ;
Kirchain, R ;
Roth, R .
JOURNAL OF POWER SOURCES, 2002, 109 (01) :71-75
[2]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[3]   Operating proton exchange membrane fuel cells without external humidification of the reactant gases - Fundamental aspects [J].
Buchi, FN ;
Srinivasan, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (08) :2767-2772
[4]   The US Department of Energy - investing in clean transport [J].
Chalk, SG ;
Milliken, J ;
Miller, JF ;
Venkateswaran, SR .
JOURNAL OF POWER SOURCES, 1998, 71 (1-2) :26-35
[5]   Syntheses of LiCoO2 for cathode materials of secondary batteries from reflux reactions at 130-200 °C [J].
Chang, SK ;
Kweon, HJ ;
Kim, BK ;
Jung, DY ;
Kwon, YU .
JOURNAL OF POWER SOURCES, 2002, 104 (01) :125-131
[6]   Water transport in polymer membranes for PEMFC [J].
Choi, KH ;
Peck, DH ;
Kim, CS ;
Shin, DR ;
Lee, TH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :197-201
[7]   Transport properties of ionomer composite membranes for direct methanol fuel cells [J].
Dimitrova, P ;
Friedrich, KA ;
Vogt, B ;
Stimming, U .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 532 (1-2) :75-83
[8]   Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells [J].
Freire, TJP ;
Gonzalez, ER .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 503 (1-2) :57-68
[9]  
Guo H, 2003, FUEL CELL SCIENCE, ENGINEERING AND TECHNOLOGY, P471
[10]   A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding [J].
Hakenjos, A ;
Muenter, H ;
Wittstadt, U ;
Hebling, C .
JOURNAL OF POWER SOURCES, 2004, 131 (1-2) :213-216