Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture

被引:258
作者
Fernandez, Michael [1 ]
Boyd, Peter G. [1 ]
Daff, Thomas D. [1 ]
Aghaji, Mohammad Zein [1 ]
Woo, Tom K. [1 ]
机构
[1] Univ Ottawa, Dept Chem, Ctr Catalysis Res & Innovat, Ottawa, ON K1N 6N5, Canada
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2014年 / 5卷 / 17期
基金
加拿大自然科学与工程研究理事会;
关键词
METHANE STORAGE; ADSORPTION; NETWORKS; SELECTIVITY;
D O I
10.1021/jz501331m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we have developed quantitative structure-property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.
引用
收藏
页码:3056 / 3060
页数:5
相关论文
共 28 条
[1]   Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional [J].
Campana, Carlos ;
Mussard, Bastien ;
Woo, Tom K. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (10) :2866-2878
[2]   Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules [J].
Chen, Banglin ;
Xiang, Shengchang ;
Qian, Guodong .
ACCOUNTS OF CHEMICAL RESEARCH, 2010, 43 (08) :1115-1124
[3]   High-throughput computational screening of metal-organic frameworks [J].
Colon, Yamil J. ;
Snurr, Randall Q. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) :5735-5749
[4]   Engineering Metal Organic Frameworks for Heterogeneous Catalysis [J].
Corma, A. ;
Garcia, H. ;
Llabres i Xamena, F. X. L. I. .
CHEMICAL REVIEWS, 2010, 110 (08) :4606-4655
[5]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[6]   Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks [J].
Deng, Hexiang ;
Doonan, Christian J. ;
Furukawa, Hiroyasu ;
Ferreira, Ricardo B. ;
Towne, John ;
Knobler, Carolyn B. ;
Wang, Bo ;
Yaghi, Omar M. .
SCIENCE, 2010, 327 (5967) :846-850
[7]   Using molecular simulation to characterise metal-organic frameworks for adsorption applications [J].
Dueren, Tina ;
Bae, Youn-Sang ;
Snurr, Randall Q. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1237-1247
[8]   Crystal engineering of NLO materials based on metal-organic coordination networks [J].
Evans, OR ;
Lin, WB .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (07) :511-522
[9]  
Farha OK, 2010, NAT CHEM, V2, P944, DOI [10.1038/NCHEM.834, 10.1038/nchem.834]
[10]   Atomic Property Weighted Radial Distribution Functions Descriptors of Metal-Organic Frameworks for the Prediction of Gas Uptake Capacity [J].
Fernandez, Michael ;
Trefiak, Nicholas R. ;
Woo, Tom K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (27) :14095-14105