An unusual form of transcriptional silencing in yeast ribosomal DNA

被引:492
作者
Smith, JS [1 ]
Boeke, JD [1 ]
机构
[1] JOHNS HOPKINS UNIV, SCH MED, DEPT MOL BIOL & GENET, BALTIMORE, MD 21205 USA
关键词
transcriptional repression; S-cerevisiae; silent mating loci; SIR genes; yeast ribosomal DNA;
D O I
10.1101/gad.11.2.241
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Generalized transcriptional repression of large chromosomal regions in Saccharomyces cerevisiae occurs at the silent mating loci and at telomeres and is mediated by the silent information regulator (SIR) genes. We have identified a novel form of transcriptional silencing in S. cerevisiae in the ribosomal DNA (rDNA) tandem array. Ty1 retrotransposons marked with a weakened URA3 gene (Ty1-mURA3) efficiently integrated into rDNA. The mURA3 marker in rDNA was transcriptionally silenced in a SIR2-dependent manner. MET15 and LEU2 were also partially silenced, indicating that rDNA silencing may be quite general. Deletion of SIR4 enhanced mURA3 and MET15 silencing, but deletion of SIR1 or SIR3 did not affect silencing, indicating that the mechanism of silencing differs from that at telomeres and silent mating loci. Deletion of SIR2 resulted in increased psoralen cross-linking of the rDNA in vivo, suggesting that a specific chromatin structure in rDNA down-regulates polymerase II promoters.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 65 条
[1]   POSITION EFFECT VARIEGATION AT FISSION YEAST CENTROMERES [J].
ALLSHIRE, RC ;
JAVERZAT, JP ;
REDHEAD, NJ ;
CRANSTON, G .
CELL, 1994, 76 (01) :157-169
[2]   MODIFIERS OF POSITION EFFECT ARE SHARED BETWEEN TELOMERIC AND SILENT MATING-TYPE LOCI IN SACCHAROMYCES-CEREVISIAE [J].
APARICIO, OM ;
BILLINGTON, BL ;
GOTTSCHLING, DE .
CELL, 1991, 66 (06) :1279-1287
[3]  
BAKER RT, 1992, J BIOL CHEM, V267, P23364
[4]   A SIMPLE AND EFFICIENT METHOD FOR DIRECT GENE DELETION IN SACCHAROMYCES-CEREVISIAE [J].
BAUDIN, A ;
OZIERKALOGEROPOULOS, O ;
DENOUEL, A ;
LACROUTE, F ;
CULLIN, C .
NUCLEIC ACIDS RESEARCH, 1993, 21 (14) :3329-3330
[5]   A GENERAL-METHOD FOR THE CHROMOSOMAL AMPLIFICATION OF GENES IN YEAST [J].
BOEKE, JD ;
XU, H ;
FINK, GR .
SCIENCE, 1988, 239 (4837) :280-282
[6]   TY ELEMENTS TRANSPOSE THROUGH AN RNA INTERMEDIATE [J].
BOEKE, JD ;
GARFINKEL, DJ ;
STYLES, CA ;
FINK, GR .
CELL, 1985, 40 (03) :491-500
[7]   A POSITIVE SELECTION FOR MUTANTS LACKING OROTIDINE-5'-PHOSPHATE DECARBOXYLASE ACTIVITY IN YEAST - 5-FLUORO-OROTIC ACID RESISTANCE [J].
BOEKE, JD ;
LACROUTE, F ;
FINK, GR .
MOLECULAR & GENERAL GENETICS, 1984, 197 (02) :345-346
[8]   THE SIR2 GENE FAMILY, CONSERVED FROM BACTERIA TO HUMANS, FUNCTIONS IN SILENCING, CELL-CYCLE PROGRESSION, AND CHROMOSOME STABILITY [J].
BRACHMANN, CB ;
SHERMAN, JM ;
DEVINE, SE ;
CAMERON, EE ;
PILLUS, L ;
BOEKE, JD .
GENES & DEVELOPMENT, 1995, 9 (23) :2888-2902
[9]  
Braunstein M, 1996, MOL CELL BIOL, V16, P4349
[10]   TRANSCRIPTIONAL SILENCING IN YEAST IS ASSOCIATED WITH REDUCED NUCLEOSOME ACETYLATION [J].
BRAUNSTEIN, M ;
ROSE, AB ;
HOLMES, SG ;
ALLIS, CD ;
BROACH, JR .
GENES & DEVELOPMENT, 1993, 7 (04) :592-604