Dynamics of simulated water under pressure

被引:228
作者
Starr, FW [1 ]
Sciortino, F
Stanley, HE
机构
[1] NIST, Div Polymers, Gaithersburg, MD 20899 USA
[2] NIST, Ctr Theoret & Computat Mat Sci, Gaithersburg, MD 20899 USA
[3] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[4] Boston Univ, Ctr Computat Sci, Boston, MA 02215 USA
[5] Boston Univ, Dept Phys, Boston, MA 02215 USA
[6] Univ Roma La Sapienza, Dipartimento Fis, INFM, I-00185 Rome, Italy
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.60.6757
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present molecular dynamics simulations of the extended simple-point-charge model of water to probe the dynamic properties at temperatures from 350 K down to 190 K and pressures from 2.5 GPa (25 kbar) down to -300 MPa (-3 kbar). We compare our results with those obtained experimentally, both of which show a diffusivity maximum as a function of pressure. We find that our simulation results are consistent with the predictions of the mode-coupling theory for the dynamics of weakly supercooled liquids-strongly supporting the hypothesis that the apparent divergences of dynamic properties observed experimentally may be independent of a possible thermodynamic singularity at low temperature. The dramatic change in water's dynamic and structural properties as a function of pressure allows us to confirm the predictions of MCT over a much broader range of the von Schweidler exponent values than has been studied for simple atomic liquids. We also show how structural changes are reflected in the wave-vector dependence of dynamic properties of the liquid along a path of nearly constant diffusivity. For temperatures below the crossover temperature of MCT (where the predictions of MCT are expected to fail), we find tentative evidence for a crossover of the temperature dependence of the diffusivity from power-law to Arrhenius behavior, with an activation energy typical of a strong liquid. [S1063-651X(99)11712-4].
引用
收藏
页码:6757 / 6768
页数:12
相关论文
共 73 条
[1]   WATER-II IS A STRONG LIQUID [J].
ANGELL, CA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (24) :6339-6341
[2]   GLASS-FORMING COMPOSITION REGIONS AND GLASS TRANSITION TEMPERATURES FOR AQUEOUS ELECTROLYTE SOLUTIONS [J].
ANGELL, CA ;
SARE, EI .
JOURNAL OF CHEMICAL PHYSICS, 1970, 52 (03) :1058-&
[3]   FORMATION OF GLASSES FROM LIQUIDS AND BIOPOLYMERS [J].
ANGELL, CA .
SCIENCE, 1995, 267 (5206) :1924-1935
[4]  
ANGELL CA, 1981, WATER COMPREHENSIVE
[5]  
[Anonymous], 2021, METASTABLE LIQUIDS
[6]   EXISTENCE OF A DENSITY MAXIMUM IN EXTENDED SIMPLE POINT-CHARGE WATER [J].
BAEZ, LA ;
CLANCY, P .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (11) :9837-9840
[7]   The effects of pressure on structural and dynamical properties of associated liquids: Molecular dynamics calculations for the extended simple point charge model of water [J].
Bagchi, K ;
Balasubramanian, S ;
Klein, ML .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (20) :8561-8567
[8]   THE LIQUID GLASS-TRANSITION OF THE HARD-SPHERE SYSTEM [J].
BARRAT, JL ;
GOTZE, W ;
LATZ, A .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (39) :7163-7170
[9]   Is there a liquid-liquid phase transition in supercooled water? [J].
Bellissent-Funel, MC .
EUROPHYSICS LETTERS, 1998, 42 (02) :161-166
[10]   Molecular-dynamics simulations of the thermal glass transition in polymer melts:: α-relaxation behavior [J].
Bennemann, C ;
Paul, W ;
Binder, K ;
Dunweg, B .
PHYSICAL REVIEW E, 1998, 57 (01) :843-851