Extracting hydration sites around proteins from explicit water simulations

被引:65
作者
Henchman, RH
McCammon, JA
机构
[1] Univ Calif San Diego, Howard Hughes Med Inst, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
关键词
molecular dynamics; protein hydration; hydration site; solvation; water structure;
D O I
10.1002/jcc.10074
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two new methods are assessed for determining the location of hydration sites around proteins from computer simulation. Current methods extract hydration sites from peaks in the water density constructed in the protein frame. However. the dynamic nature of the water molecules, the nearby protein residues, and the protein reference frame as a whole tend to smear out the water density, making it more difficult to resolve sites. Two techniques are introduced to better resolve the water density. The first is to construct the water density from the time-averaged position of each water molecule in the protein frame while the water remains within a given distance of this averaged position. The second technique is to construct the water density from the time-averaged position of each water in the reference frame only of the nearby residues. Criteria for determining hydration sites from the water density are examined. Both techniques are found to significantly improve the detail in the water density and the number of hydration sites detected. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:861 / 869
页数:9
相关论文
共 46 条
[1]  
Abseher R, 1996, PROTEINS, V25, P366, DOI 10.1002/(SICI)1097-0134(199607)25:3<366::AID-PROT8>3.0.CO
[2]  
2-D
[3]  
[Anonymous], [No title captured]
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   ACETYLCHOLINESTERASE INHIBITION BY FASCICULIN - CRYSTAL-STRUCTURE OF THE COMPLEX [J].
BOURNE, Y ;
TAYLOR, P ;
MARCHOT, P .
CELL, 1995, 83 (03) :503-512
[6]   SOLVENT EFFECTS ON PROTEIN MOTION AND PROTEIN EFFECTS ON SOLVENT MOTION - DYNAMICS OF THE ACTIVE-SITE REGION OF LYSOZYME [J].
BROOKS, CL ;
KARPLUS, M .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 208 (01) :159-181
[7]   HYDRATION OF PROTEINS - A COMPARISON OF EXPERIMENTAL RESIDENCE TIMES OF WATER-MOLECULES SOLVATING THE BOVINE PANCREATIC TRYPSIN-INHIBITOR WITH THEORETICAL-MODEL CALCULATIONS [J].
BRUNNE, RM ;
LIEPINSH, E ;
OTTING, G ;
WUTHRICH, K ;
VANGUNSTEREN, WF .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 231 (04) :1040-1048
[8]   How many water molecules can be detected by protein crystallography? [J].
Carugo, O ;
Bordo, D .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1999, 55 :479-483
[9]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[10]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092