A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination

被引:105
作者
Martomo, SA [1 ]
Yang, WW [1 ]
Gearhart, PJ [1 ]
机构
[1] NIA, Lab Mol Gerontol, NIH, Baltimore, MD 21224 USA
关键词
DNA repair enzymes; cytosine deamination; class switching; mutation hotspots; B lymphocytes;
D O I
10.1084/jem.20040691
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Somatic hypermutation is initiated by activation-induced cytidine deaminase (AID), and occurs in several kilobases of DNA around rearranged immunoglobulin variable (V) genes and switch (S) sites before constant genes. AID deaminates cytosine to uracil, which can produce mutations of C:G nucleotide pairs, and the mismatch repair protein Msh2 participates in generating substitutions of downstream A:T pairs. Msh2 is always found as a heterodimer with either Msh3 or Msh6, so it is important to know which one is involved. Therefore, we sequenced V and S regions from Msh3- and Msh6-deficient mice and compared mutations to those from wild-type mice. Msh6-deficient mice had fewer substitutions of A and T bases in both regions and reduced heavy chain class switching, whereas Msh3-deficient mice had normal antibody responses. This establishes a role for the Msh2-Msh6 heterodimer in hypermutation and switch recombination. When the positions of mutation were mapped, several focused peaks were found in Msh6(-/-) clones, whereas mutations were dispersed in Msh3(-/-) and wild-type clones. The peaks occurred at either G or C in WGCW motifs (W = A or T), indicating that C was mutated on both DNA strands. This suggests that AID has limited entry points into V and S regions in vivo, and subsequent mutation requires Msh2-Msh6 and DNA polymerase.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 43 条
[1]   hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6 [J].
Acharya, S ;
Wilson, T ;
Gradia, S ;
Kane, MF ;
Guerrette, S ;
Marsischky, GT ;
Kolodner, R ;
Fishel, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13629-13634
[2]   Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice [J].
Bardwell, PD ;
Woo, CJ ;
Wei, KC ;
Li, ZQ ;
Martin, A ;
Sack, SZ ;
Parris, T ;
Edelmann, W ;
Scharff, MD .
NATURE IMMUNOLOGY, 2004, 5 (02) :224-229
[3]   Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase [J].
Bransteitter, R ;
Pham, P ;
Scharff, MD ;
Goodman, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :4102-4107
[4]   Transcription-targeted DNA deamination by the AID antibody diversification enzyme [J].
Chaudhuri, J ;
Tian, M ;
Khuong, C ;
Chua, K ;
Pinaud, E ;
Alt, FW .
NATURE, 2003, 422 (6933) :726-730
[5]   Immunoglobulin gene conversion in chicken DT40 cells largely proceeds through an abasic site intermediate generated by excision of the uracil produced by AID-mediated deoxycytidine deamination [J].
Di Noia, JM ;
Neuberger, MS .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2004, 34 (02) :504-508
[6]   AID mediates hypermutation by deaminating single stranded DNA [J].
Dickerson, SK ;
Market, E ;
Besmer, E ;
Papavasiliou, EN .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 197 (10) :1291-1296
[7]   Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation [J].
Ehrenstein, MR ;
Neuberger, MS .
EMBO JOURNAL, 1999, 18 (12) :3484-3490
[8]   Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination [J].
Ehrenstein, MR ;
Rada, C ;
Jones, AM ;
Milstein, C ;
Neuberger, MS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14553-14558
[9]   DNA polymerase η is involved in hypermutation occurring during immunoglobulin class switch recombination [J].
Faili, A ;
Aoufouchi, S ;
Weller, S ;
Vuillier, F ;
Stary, A ;
Sarasin, A ;
Reynaud, CA ;
Weill, JC .
JOURNAL OF EXPERIMENTAL MEDICINE, 2004, 199 (02) :265-270
[10]   Mismatch repair deficiency interferes with the accumulation of mutations in chronically stimulated B cells and not with the hypermutation process [J].
Frey, S ;
Bertocci, B ;
Delbos, F ;
Quint, L ;
Weill, JC ;
Reynaud, CA .
IMMUNITY, 1998, 9 (01) :127-134