Ultrastrong coupling regime of cavity QED with phase-biased flux qubits

被引:233
作者
Bourassa, J. [1 ,2 ]
Gambetta, J. M. [3 ,4 ]
Abdumalikov, A. A., Jr. [5 ]
Astafiev, O. [5 ,6 ]
Nakamura, Y. [5 ,6 ]
Blais, A. [1 ,2 ]
机构
[1] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Sherbrooke, RQMP, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[5] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan
[6] NEC Nano Elect Res Labs, Tsukuba, Ibaraki 3058501, Japan
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 03期
关键词
STATES;
D O I
10.1103/PhysRevA.80.032109
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically study a circuit QED architecture based on a superconducting flux qubit directly coupled to the center conductor of a coplanar waveguide transmission-line resonator. As already shown experimentally [A. A. Abdumalikov, Jr. et al., Phys. Rev. B 78, 180502(R) (2008)], the strong coupling regime of cavity QED can readily be achieved by optimizing the local inductance of the resonator in the vicinity of the qubit. In addition to yielding stronger coupling with respect to other proposals for flux qubit based circuit QED, this approach leads to a qubit-resonator coupling strength g which does not scale as the area of the qubit but is proportional to the total inductance shared between the resonator and the qubit. Strong coupling can thus be attained while still minimizing sensitivity to flux noise. Finally, we show that by taking advantage of the large kinetic inductance of a Josephson junction in the center conductor of the resonator can lead to coupling energies of several tens of percent of the resonator frequency, reaching the ultrastrong coupling regime of cavity QED where the rotating-wave approximation breaks down. This should allow an on-chip implementation of the E circle times beta Jahn-Teller model.
引用
收藏
页数:8
相关论文
共 27 条
[1]   Vacuum Rabi splitting due to strong coupling of a flux qubit and a coplanar-waveguide resonator [J].
Abdumalikov, Abdufarrukh A., Jr. ;
Astafiev, Oleg ;
Nakamura, Yasunobu ;
Pashkin, Yuri A. ;
Tsai, JawShen .
PHYSICAL REVIEW B, 2008, 78 (18)
[2]   Quantum-information processing with circuit quantum electrodynamics [J].
Blais, Alexandre ;
Gambetta, Jay ;
Wallraff, A. ;
Schuster, D. I. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 75 (03)
[3]  
BOURASSA J, UNPUB
[4]   Nonadditivity of decoherence rates in superconducting qubits [J].
Burkard, G ;
Brito, F .
PHYSICAL REVIEW B, 2005, 72 (05)
[5]   Coherent quantum dynamics of a superconducting flux qubit [J].
Chiorescu, I ;
Nakamura, Y ;
Harmans, CJPM ;
Mooij, JE .
SCIENCE, 2003, 299 (5614) :1869-1871
[6]   Quantum vacuum properties of the intersubband cavity polariton field [J].
Ciuti, C ;
Bastard, G ;
Carusotto, I .
PHYSICAL REVIEW B, 2005, 72 (11)
[7]   Input-output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters [J].
Ciuti, Cristiano ;
Carusotto, Iacopo .
PHYSICAL REVIEW A, 2006, 74 (03)
[8]  
DEVORET MH, 1997, ELSEVIER SCI, P351
[9]   Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting [J].
Gambetta, Jay ;
Blais, Alexandre ;
Schuster, D. I. ;
Wallraff, A. ;
Frunzio, L. ;
Majer, J. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2006, 74 (04)
[10]   Entanglement and bifurcations in Jahn-Teller models [J].
Hines, AP ;
Dawson, CM ;
McKenzie, RH ;
Milburn, GJ .
PHYSICAL REVIEW A, 2004, 70 (02) :022303-1