Entorhinal but not hippocampal or subicular lesions disrupt latent inhibition in rats

被引:79
作者
Coutureau, E [1 ]
Galani, R [1 ]
Gosselin, O [1 ]
Majchrzak, M [1 ]
Di Scala, G [1 ]
机构
[1] ULP, CNRS, UMR 7521, Lab Neurosci Comportementales & Cognit, F-67000 Strasbourg, France
关键词
conditioned emotional response; entorhinal cortex; hippocampus; ibotenate; latent inhibition; locomotor activity; NMDA; schizophrenia; selective lesions; subiculum;
D O I
10.1006/nlme.1998.3895
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Latent inhibition (LI) is the deficit of conditioning resulting from repeated nonreinforced preexposure to a conditioned stimulus before its pairing with an unconditioned stimulus. There are cumulative data showing that large lesions of the hippocampal formation disrupt LI. However, the effects of selective lesions of the different components of the hippocampal formation have never been directly addressed in the same study and conditioning paradigm. The first experiment of the present study aimed at investigating the effects of excitotoxic lesions of the hippocampus, subiculum, or entorhinal cortex on LI in an "off-baseline"-conditioned emotional response procedure. Hippocampus or subiculum lesions had no effect on either LI or conditioning. In contrast, entorhinal cortex lesions disrupted LI without modifying conditioning. In Experiment 2, locomotor activity in a novel environment was assessed in the same rats. Whereas lesions of hippocampus increased locomotor activity, lesions of the subiculum or the entorhinal cortex were devoid of effect. Although both LI and habituation to novel environmental cues are thought to involve interactions between the hippocampal formation and the mesolimbic pathway, these results indicate a functional dissociation between the hippocampus and the entorhinal cortex. (C) 1999 Academic Press.
引用
收藏
页码:143 / 157
页数:15
相关论文
共 62 条
[1]  
Akil M, 1997, AM J PSYCHIAT, V154, P1010
[2]  
Amaral David G., 1995, P443
[3]   Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses [J].
Arnold, SE ;
Ruscheinsky, DD ;
Han, LY .
BIOLOGICAL PSYCHIATRY, 1997, 42 (08) :639-647
[4]   DIFFERENTIAL PERFORMANCE OF ACUTE AND CHRONIC-SCHIZOPHRENICS IN A LATENT INHIBITION TASK [J].
BARUCH, I ;
HEMSLEY, DR ;
GRAY, JA .
JOURNAL OF NERVOUS AND MENTAL DISEASE, 1988, 176 (10) :598-606
[5]   ACQUISITION OF A COMPLEX PLACE TASK IN RATS WITH SELECTIVE IBOTENATE LESIONS OF HIPPOCAMPAL-FORMATION - COMBINED LESIONS OF SUBICULUM AND ENTORHINAL CORTEX VERSUS HIPPOCAMPUS [J].
BOUFFARD, JP ;
JARRARD, LE .
BEHAVIORAL NEUROSCIENCE, 1988, 102 (06) :828-834
[6]   CRITICAL ROLE OF THE PARAHIPPOCAMPAL REGION FOR PAIRED-ASSOCIATE LEARNING IN RATS [J].
BUNSEY, M ;
EICHENBAUM, H .
BEHAVIORAL NEUROSCIENCE, 1993, 107 (05) :740-747
[7]   DIFFERENTIAL-EFFECTS OF EXCITOTOXIC LESIONS OF THE BASOLATERAL AMYGDALA, VENTRAL SUBICULUM AND MEDIAL PREFRONTAL CORTEX ON RESPONDING WITH CONDITIONED REINFORCEMENT AND LOCOMOTOR-ACTIVITY POTENTIATED BY INTRAACCUMBENS INFUSIONS OF D-AMPHETAMINE [J].
BURNS, LH ;
ROBBINS, TW ;
EVERITT, BJ .
BEHAVIOURAL BRAIN RESEARCH, 1993, 55 (02) :167-183
[8]   Fimbria-fornix vs selective hippocampal lesions in rats: Effects on locomotor activity and spatial learning and memory [J].
Cassel, JC ;
Cassel, S ;
Galani, R ;
Kelche, C ;
Will, B ;
Jarrard, L .
NEUROBIOLOGY OF LEARNING AND MEMORY, 1998, 69 (01) :22-45
[9]   2 FUNCTIONAL COMPONENTS OF THE HIPPOCAMPAL MEMORY SYSTEM [J].
EICHENBAUM, H ;
OTTO, T ;
COHEN, NJ .
BEHAVIORAL AND BRAIN SCIENCES, 1994, 17 (03) :449-472
[10]   THE LATENT INHIBITION MODEL OF SCHIZOPHRENIC ATTENTION DISORDER - HALOPERIDOL AND SULPIRIDE ENHANCE RATS ABILITY TO IGNORE IRRELEVANT STIMULI [J].
FELDON, J ;
WEINER, I .
BIOLOGICAL PSYCHIATRY, 1991, 29 (07) :635-646