C-terminal truncation of Dlk/ZIP kinase leads to abrogation of nuclear transport and high apoptotic activity

被引:42
作者
Kögel, D [1 ]
Bierbaum, H [1 ]
Preuss, U [1 ]
Scheidtmann, KH [1 ]
机构
[1] Univ Bonn, Inst Genet, D-53117 Bonn, Germany
关键词
Dlk/ZIP kinase; nuclear transport; PML bodies; actin filaments; apoptosis;
D O I
10.1038/sj.onc.1203169
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dlk (also termed ZIP kinase) is a novel serine/threonine kinase with a unique C-terminal domain that is rich in arginine and contains three putative NLS motifs and a functional lecuine zipper. Dlk is indeed localized in the nucleus where it shows a speckled distribution, To elucidate the biological functions of Dlk, we wanted to identify the signals relevant for nuclear transport and further the nuclear structures which Dlk binds to. Expression of various deletion and point mutations of Dlk as GFP fusion proteins revealed that the leucine zipper is required for association with speckles and the most C-terminal NLS is necessary and sufficient for nuclear transport. Interestingly, a C-terminal deletion mutant defective for nuclear transport exhibited a pronounced colocalization with actin filaments and, even more strikingly, was a very potent inducer of apoptosis, This apoptotic activity was abrogated, however, when this mutant was retargeted to the nucleus via a heterologous NLS from large T, indicating that Dlk only exerts an apoptotic activity in the cytoplasm, To identify the speckle like structures to which Dlk binds we performed immunofluorescence analyses with antibodies directed against representative marker proteins of replication, transcription, or splicing centers. None of these marker proteins revealed a colocalization with Dlk. Instead, we found a partial colocalization with PML bodies which seem to play a key role in regulation of apoptosis, Taken together, these data strongly suggest a functional role for Dlk in control of cell survival which is dependent on its subcellular localization.
引用
收藏
页码:7212 / 7218
页数:7
相关论文
共 36 条
[1]  
Bloch DB, 1999, MOL CELL BIOL, V19, P4423
[2]   DAP-kinase is a Ca2+ calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity [J].
Cohen, O ;
Feinstein, E ;
Kimchi, A .
EMBO JOURNAL, 1997, 16 (05) :998-1008
[3]   IDENTIFICATION OF A NOVEL SERINE THREONINE KINASE AND A NOVEL 15-KD PROTEIN AS POTENTIAL MEDIATORS OF THE GAMMA-INTERFERON-INDUCED CELL-DEATH [J].
DEISS, LP ;
FEINSTEIN, E ;
BERISSI, H ;
COHEN, O ;
KIMCHI, A .
GENES & DEVELOPMENT, 1995, 9 (01) :15-30
[4]   Signal transduction pathways that regulate cell survival and cell death [J].
Dragovich, T ;
Rudin, CM ;
Thompson, CB .
ONCOGENE, 1998, 17 (25) :3207-3213
[5]   A NOVEL MACROMOLECULAR STRUCTURE IS A TARGET OF THE PROMYELOCYTE-RETINOIC ACID RECEPTOR ONCOPROTEIN [J].
DYCK, JA ;
MAUL, GG ;
MILLER, WH ;
CHEN, JD ;
KAKIZUKA, A ;
EVANS, RM .
CELL, 1994, 76 (02) :333-343
[6]   Proteolytic activation of protein kinase C delta by an ICE-like protease in apoptotic cells [J].
Emoto, Y ;
Manome, Y ;
Meinhardt, G ;
Kisaki, H ;
Kharbanda, S ;
Robertson, M ;
Ghayur, T ;
Wong, WW ;
Kamen, R ;
Weichselbaum, R ;
Kufe, D .
EMBO JOURNAL, 1995, 14 (24) :6148-6156
[7]   An evolutionarily conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2 [J].
Fabrizio, P ;
Laggerbauer, B ;
Lauber, J ;
Lane, WS ;
Luhrmann, R .
EMBO JOURNAL, 1997, 16 (13) :4092-4106
[8]   PI3K: Downstream AKTion blocks apoptosis [J].
Franke, TF ;
Kaplan, DR ;
Cantley, LC .
CELL, 1997, 88 (04) :435-437
[9]   Apoptotic pathways: The roads to ruin [J].
Green, DR .
CELL, 1998, 94 (06) :695-698
[10]  
HOZAK P, 1994, J CELL SCI, V107, P2191