In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow

被引:303
作者
Tang, DQ [1 ]
Cao, LZ [1 ]
Burkhardt, BR [1 ]
Xia, CQ [1 ]
Litherland, SA [1 ]
Atkinson, MA [1 ]
Yang, LJ [1 ]
机构
[1] Univ Florida, Coll Med, Dept Pathol Immunol & Lab Med, Gainesville, FL 32611 USA
关键词
D O I
10.2337/diabetes.53.7.1721
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Efforts toward routine islet cell transplantation as a means for reversing type I diabetes have been hampered by islet availability as well as allograft rejection. In vitro transdifferentiation of mouse bone marrow (BM)-derived stem (mBMDS) cells into insulin-producing cells could provide an abundant source of autologous cells for this procedure. For this study, we isolated and characterized single cell-derived stem cell lines obtained from mouse BM. In vitro differentiation of these mBMDS cells resulted in populations meeting a number of criteria set forth to define functional insulin-producing cells. Specifically, the mBMDS cells expressed multiple genes related to pancreatic beta-cell development and function (insulin I and 11, Glut2, glucose kinase, islet amyloid polypeptide, nestin, pancreatic duodenal homeobox-1 [PDX-1], and Pax6). Insulin and C-peptide production was identified by immunocytochemistry and confirmed by electron microscopy. In vitro studies involving glucose stimulation identified glucose-stimulated insulin release. Finally, these mBMDS cells transplanted into streptozotocin-induced diabetic mice imparted reversal of hyperglycemia and improved metabolic profiles in response to intraperitoneal glucose tolerance testing. These results indicate that mouse BM harbors cells capable of in vitro trans-differentiating into functional insulin-producing cells and support efforts to derive such cells in humans as a means to alleviate limitations surrounding islet cell transplantation.
引用
收藏
页码:1721 / 1732
页数:12
相关论文
共 41 条
[1]   Isolation of putative progenitor endothelial cells for angiogenesis [J].
Asahara, T ;
Murohara, T ;
Sullivan, A ;
Silver, M ;
vanderZee, R ;
Li, T ;
Witzenbichler, B ;
Schatteman, G ;
Isner, JM .
SCIENCE, 1997, 275 (5302) :964-967
[2]   Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization [J].
Asahara, T ;
Masuda, H ;
Takahashi, T ;
Kalka, C ;
Pastore, C ;
Silver, M ;
Kearne, M ;
Magner, M ;
Isner, JM .
CIRCULATION RESEARCH, 1999, 85 (03) :221-228
[3]   Insulin production by human embryonic stem cells [J].
Assady, S ;
Maor, G ;
Amit, M ;
Itskovitz-Eldor, J ;
Skorecki, KL ;
Tzukerman, M .
DIABETES, 2001, 50 (08) :1691-1697
[4]   Type 1 diabetes: new perspectives on disease pathogenesis and treatment [J].
Atkinson, MA ;
Eisenbarth, GS .
LANCET, 2001, 358 (9277) :221-229
[5]   In vitro cultivation of human islets from expanded ductal tissue [J].
Bonner-Weir, S ;
Taneja, M ;
Weir, GC ;
Tatarkiewicz, K ;
Song, KH ;
Sharma, A ;
O'Neil, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :7999-8004
[6]   COMPENSATORY GROWTH OF PANCREATIC BETA-CELLS IN ADULT-RATS AFTER SHORT-TERM GLUCOSE-INFUSION [J].
BONNERWEIR, S ;
DEERY, D ;
LEAHY, JL ;
WEIR, GC .
DIABETES, 1989, 38 (01) :49-53
[7]   Streptozotocin-induced diabetes in mice lacking alpha beta T cells [J].
Elliott, JI ;
Dewchand, H ;
Altmann, DM .
CLINICAL AND EXPERIMENTAL IMMUNOLOGY, 1997, 109 (01) :116-120
[8]   Muscle regeneration by bone marrow derived myogenic progenitors [J].
Ferrari, G ;
Cusella-De Angelis, G ;
Coletta, M ;
Paolucci, E ;
Stornaiuolo, A ;
Cossu, G ;
Mavilio, F .
SCIENCE, 1998, 279 (5356) :1528-1530
[9]  
GUNNARSSON R, 1983, LANCET, V2, P571
[10]  
Gussoni E, 1999, NATURE, V401, P390, DOI 10.1038/43922