Evaluation of MJO Forecast Skill from Several Statistical and Dynamical Forecast Models

被引:159
作者
Seo, Kyong-Hwan [1 ]
Wang, Wanqiu [2 ]
Gottschalck, Jon [2 ]
Zhang, Qin [2 ]
Schemm, Jae-Kyung E. [2 ]
Higgins, Wayne R. [2 ]
Kumar, Arun [2 ]
机构
[1] Pusan Natl Univ, Div Earth Environm Syst, Pusan 609735, South Korea
[2] NOAA, NWS, NCEP, Climate Predict Ctr, Camp Springs, MD USA
关键词
MADDEN-JULIAN OSCILLATION; SEA-SURFACE TEMPERATURE; OUTGOING LONGWAVE RADIATION; TROPICAL WESTERN PACIFIC; INTRASEASONAL VARIABILITY; BOREAL SUMMER; EQUATORIAL WAVES; PRINCIPAL MODES; NORTH PACIFIC; PREDICTION;
D O I
10.1175/2008JCLI2421.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This work examines the performance of Madden-Julian oscillation (MJO) forecasts from NCEP's coupled and uncoupled general circulation models (GCMs) and statistical models. The forecast skill from these methods is evaluated in near-real time. Using a projection of El Nino-Southern Oscillation (ENSO)-removed variables onto the principal patterns of MJO convection and upper- and lower-level circulations, MJO-related signals in the dynamical model forecasts are extracted. The operational NCEP atmosphere-ocean fully coupled Climate Forecast System (CFS) model has useful skill (> 0.5 correlation) out to similar to 15 days when the initial MJO convection is located over the Indian Ocean. The skill of the CFS hindcast dataset for the period from 1995 to 2004 is nearly comparable to that from a lagged multiple linear regression model, which uses information from the previous five pentads of the leading two principal components (PCs). In contrast, the real-time analysis for the MJO forecast skill for the period from January 2005 to February 2006 using the lagged multiple linear regression model is reduced to similar to 10-12 days. However, the operational CFS forecast for this period is skillful out to similar to 17 days for the winter season, implying that the coupled dynamical forecast has some usefulness in predicting the MJO compared to the statistical model. It is shown that the coupled CFS model consistently, but only slightly, outperforms the uncoupled atmospheric model (by one to two days), indicating that only limited improvement is gained from the inclusion of the coupled air-sea interaction in the MJO forecast in this model. This slight improvement may be the result of the existence of a propagation barrier around the Maritime Continent and the far western Pacific in the NCEP Global Forecast System (GFS) and CFS models, as shown in several previous studies. This work also suggests that the higher horizontal resolution and finer initial data might contribute to improving the forecast skill, presumably as a result of an enhanced representation of the Maritime Continent region.
引用
收藏
页码:2372 / 2388
页数:17
相关论文
共 92 条
[1]  
Carvalho LMV, 2004, J CLIMATE, V17, P88, DOI 10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO
[2]  
2
[3]   Near-global impact of the Madden-Julian Oscillation on rainfall [J].
Donald, A ;
Meinke, H ;
Power, B ;
Maia, ADN ;
Wheeler, MC ;
White, N ;
Stone, RC ;
Ribbe, J .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (09)
[4]  
FERRANTI L, 1990, J ATMOS SCI, V47, P2177, DOI 10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO
[5]  
2
[6]  
Flatau M, 1997, J ATMOS SCI, V54, P2373, DOI 10.1175/1520-0469(1997)054<2373:TFBECA>2.0.CO
[7]  
2
[8]  
Fu XH, 2003, J ATMOS SCI, V60, P1733, DOI 10.1175/1520-0469(2003)060<1733:CBNIOA>2.0.CO
[9]  
2
[10]  
HENDON HH, 1990, J ATMOS SCI, V47, P2909, DOI 10.1175/1520-0469(1990)047<2909:TIDOOT>2.0.CO