On the Dirac-Frenkel/McLachlan variational principle

被引:42
作者
Raab, A [1 ]
机构
[1] Univ Heidelberg, Inst Phys Chem, D-69120 Heidelberg, Germany
关键词
D O I
10.1016/S0009-2614(00)00200-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Dirac-Frenkel/McLachlan variational principle (DFMVP) is re-derived using a general and strict formalism which is valid for ail practical applications. General equations of motion for the parameters are derived from the DFMVP. The time-dependent parameter set solving the equations of motion forms an approximate variational solution of the original problem. An error estimate for the approximation is presented which shows that the variational solution converges to the exact one if the parametrisation is improved. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:674 / 678
页数:5
相关论文
共 17 条
[1]  
Arnold VI, 1998, ORDINARY DIFFERENTIA
[2]   The multiconfiguration time-dependent Hartree (MCTDH) method:: a highly efficient algorithm for propagating wavepackets [J].
Beck, MH ;
Jäckle, A ;
Worth, GA ;
Meyer, HD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 324 (01) :1-105
[3]   An efficient and robust integration scheme for the equations of motion of the multiconfiguration time-dependent Hartree (MCTDH) method [J].
Beck, MH ;
Meyer, HD .
ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1997, 42 (02) :113-129
[4]   ON THE EQUIVALENCE OF TIME-DEPENDENT VARIATIONAL-PRINCIPLES [J].
BROECKHOVE, J ;
LATHOUWERS, L ;
KESTELOOT, E ;
VANLEUVEN, P .
CHEMICAL PHYSICS LETTERS, 1988, 149 (5-6) :547-550
[5]  
Dirac PAM, 1930, P CAMB PHILOS SOC, V26, P376
[6]  
Frenkel J., 1934, WAVE MECH
[7]   A wave packet approach to the Liouville-von Neumann equation for dissipative systems [J].
Gerdts, T ;
Manthe, U .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (08) :3017-3023
[8]   TIME-DEPENDENT VARIATIONAL APPROACH TO SEMICLASSICAL DYNAMICS [J].
HELLER, EJ .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (01) :63-73
[9]   TIME-DEPENDENT ROTATED HARTREE APPROACH [J].
KUCAR, J ;
MEYER, HD ;
CEDERBAUM, LS .
CHEMICAL PHYSICS LETTERS, 1987, 140 (05) :525-530
[10]  
Ladas G. E., 1972, DIFFERENTIAL EQUATIO